


TECHNICAL REPORT STANDARD TITLE PAGE
3. RECIPIENT’S CATALOG NO.

1. REPORT NO. 2. GOVERNMENT ACCESSION NO.
HASA CR-2182
4, TITLE AND SUBTITLE ' S REPORT DATE ]
A Boundary Layer Approach to the Analysis of Atmospheric| January 1973
Motien Over a Surface Obstruction 6. PERFORMING ORGANIZATION CUDE
M109
7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT #
Walter Frost, J. R. Maus and W. R. Simpson
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.
The University of Tennessee Space Institute e
Tullahoma, Tennessee 37388 11. CONTRACT O -
NAS8-27387
13. TYPE OF REPOR7T & PERIOD COVERED
12, SPONSORING AGENCY NAME AND ADDRESS Contra.ct Report
- . 1- . 2,
National Aeronautics and Space Administration June 3, 1971-Sept. 2, 1972
Washington, D, C. 20546 14, SPONSORING AGENCY CODE
, D. C.

15. SUPPLEMENTARY NOTES

16. ABSTRACT

A boundary layer approach for the solution of the flow field induced over a two-
dimensional surface obstruction, such as a building or other man-made structure, is
proposed. Adopting a specific geometry in the form of a semi-elliptical cylinder, the
characteristics of atmospheric shear flow over a rough terrain are coupled with the
well-known boundary layer equations.

Two approaches are presented to incorporate the pressure field and boundary

¢ onditions which exist within the large viscous region over the obstruction. The first
considers a region in the immediate vicinity of the body in which the pressure distri-
bution and outer boundary condition on the velocity are computed from potential theory
for flow over the elliptical cylinder. The second approach considers a much larger
region of influence, extending from the surface to the undisturbed flow at large heights
above the obstruction. Methods which appear to provide an improved theoretical model
of the flow over the ellipse, such as a technique for simulating the effect of the sepera-
tion regions upstream and downstream of the body, are also presented.

17. KEY WORDS 18. DISTRIBUTION STATEMENT
Boundary Layer, Reynold's Number,

Surface Roughness, Wind Profile

19. SECURITY CLASSIF, (of this repart) 20. SECURITY CLASSIF. (of this pege) 21. NO, OF PAGES | 22. PRICE

Unclassified Unclassified 153 $3.00

MSFC - Form 3292 B
* For sale by the Nationa! Technical Information Service, Springfield, Virginia 22151



TABLE OF CONTENTS

CHAPTER
I. INTRODUCTION AND STATEMENT OF PROBLEM . . . . .
II. ANALYSIS OF ATMOSPHERIC FLOW OVER SURFACE
OBSTRUCTIONS BY THE TURBULENT BOUNDARY
LAYER APPROACH . ¢« &+ ¢ o ¢ o o o o o 2 o o o =
The Nature of the Approaching Wind . . . . . .
Governing Equations for Atmoﬁpheric Flow . . .
Coriolis Effects in Atmospheric Shear Flows .
Approximation of the Reynolds' Stress by
Turbulent Viscosity . . « ¢ ¢« ¢« ¢ ¢ o « o &
Empirical Models of Eddy Viscosity . . . . . .
The concept ot the mixing length . . . . . .
Van Driest eddy viscosity model . . . . . .
Conservation of eddy viscosity . . . . . . .
Consideration of the Préssure Force in the
Boundary Layer Equations . . . . . . . . . .
Improved Approximation of £he Vertical
Pressure Field . ¢ + ¢ ¢ ¢« ¢« ¢ o o o o o o
Boundary Conditions . . . ¢« & « « = ¢ o « o &
Lower boundary conditions . . . . . . . . .
Outer boundary conditions . . . . « « « « &
The Effect of Separation Regions on the
Boundary LaYer « ¢ ¢ o« o o ¢ o o o o s s s
Curvilinear Effects of the Streamline-Oriented

Coordinate System . . . ¢ & ¢ ¢ ¢« ¢ o o o @

iii

PAGE

11

14
16
16
21

23

24

31

32

32

34

35

39

M109



CHAPT.L!I.
III. NUMERICAL £OLU.LIC F THE TURBULENT BOUNDARY

LAYER EQUATIONS . . . 4 ¢ & o o o s o o o o o
The Implicit, Finite Difference Technique for
Solution of the Boundary Layer Equations . .
Comﬁents on Convergence and Accuracy of the
Numerical Solution . . . ¢« + ¢ ¢ ¢ ¢« o o « &
Convergence of the iterative procedure . . .
The effect of truncation error on accuracy .
Comparison of Numerical Solutions with
Known Turbulent Flows . . . .« « « ¢« o« o &+ o
IV. DISCUSSION OF RESULTS FOR THE FLOW FIELD NEAR
ELLIPTICAL OBSTRUCTIONS .+ &+ « o o o« o o o o =
The Effect of Elliptical Aspect Ratio on the
Boundary Laye€r . « « o« o o « o s o o o o o
The Effect of Surface Roughness on the
Boundary Laye€r’'. « . « « « o o o o o o o o
The Reynolds' Number as a Parameter . . . . .
The Effect of Roughness and Ellipse Geometry
on Separation . . . .« ¢ s 4 e e e e 0 e e
Geometrical Effects on the Turbulent Viscosity
Calculation of Flow Over a Fence with
Comparison to Data . « ¢« « « o« ¢ o o o o o o
V. DISCUSSION OF RESULTS FOR AN IMPROVED BOUNDARY
LAYER ANALYSIS OF FLOW OVER ELLIPTICAL
OBSTRUCTIONS . . « « .« . ; e s 4 e s s s

Analysis of Enlarged Flow Fields . . . « « . &
iv

PAGE

43

45

51

52

53

55

59

61

66

71

76

78

81

85

85



CHAPTER PAGE
Boundary Layer Effects Produced by
Separation Regions . . . . « « « « o« « « « « o 93
VI. DISCUSSION OF RESULTS RELATIVE TO
AERONAUTICAL APPLICATION ¢ . « -2« « o o s « « o« 98

VII. CONCLUSIONS AND SUMMARY “. . . « « o « o« s « « « . 109

BIBLIOGRAPHY . . . + + « o o« « o « o o o o » o« s o « o o« 112
APPENDIXES . v v o « « o o « s o & o o b o o« o s o « » o 117
A. - UNIFORM POTENTIAL FLOW PAST AN ELLIPTICAL
QYLINDER . + « o« « o o o« o = o o o o o o o « « 4 118
B. UNIFORM POTENTIAL FLOW PAST AN ELLIPTICAL
CYLINDER WITH FIXED VORTICES . . . . .« « « « o . 129

C. THE CONSERVATION OF EDDY VISCOSITY . . . . . . . . 139




LIST OF FIGURES

FIGURE

1. Concept of the Disturbed Boundary Layer: 6(x) Is
the Thickness of the Internal Boundary Layer;
§' Is the Displacement of the Outer Flow
Field Required by Continuity . . . . « « .« « .
2. Basic Geometry of the Flow over a Two-Dimensional
Elliptical Cylinder of Major Axis 2a and
Minor Axis 2b . . . . .

3. Turbulent Mixing Length Concept . . . . . . . .« .
4. Potential Pressure Distribution over the
Elliptical Cylinder . . . . « « « « o« =
5. Qualitative Description of the Flow Field over
the Elliptical Cylinder . . .

6. Flow over a Rough Surface . . . . . « . . « « .« .
7. Potential Velocity Distribution over Elliptical
Cylinders with Fixed Vortices . . . . . . . . .
8. Coordinate System over the Elliptical Cylinder
9. Effect of the Variation of Numerical Increment
Size on the Velocity Profile . . . . . . . . .
10. Effect of Increment Size on §F L. oo
11. Region of Solution for Flow over an Elliptical
Cylinder . . . v ¢ ¢« ¢« o o o o o o« o o o o . .
12. Effect of Elliptical Aspect Ratio on Velocity
Profile at the Top of the Ellipse for

Zo/D = 0.005 . . . v e e e e e e e e e e e e

vi

PAGE

27

29

33

37

40

56

57

60

63




FIGURE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Effect of Elliptical Aspect Ratio on Velocity
Profile at the Top of the Ellipse for

zo/b = 0.020 . & .t e e e e e e e e e e e e

Comparison of the PreSsure Distribution over a
10/1 and 2/1 Elliptical Cylinder . . . « « « .
Effect of Surface Roughness on the Velocity
Profiles at the Top of the 2/1 Ellipse . . . . .
Effect of Surface Roughness on the Velocity
Profiles at the Top of 10/1 Ellipse . . . . .
Comparison of the Effects of Changes in Surface
Roughness on Velocity Profile at the Top of
the 2/1 and 10/1 E1llipSe . & « ¢ « o o o o s o =
Effect of Reynolds' Number on the Velocity Profile
at the Top of the Ellipse for z,/b = .005 . . . .
Effect of the Initial Friction Velocity and
Reynolds' Number on the Displacement
Thickness « ¢ ¢« ¢« ¢ ¢« o o o ¢ o o o o o o o o o o
Elliptical Geometry and Surface Roughness Effects
on the Length of the Separation Regions . . . . .
Development of the Eddy Viscosity Profiles over a
10/1 Ellipse with zo/b = 005 . . ¢ 4 4 e e e

Comparison of Numerical Calculation with bata for

Flow over a FEeNnce . . « « 4+ « o « =

vii

PAGE

64

65

67

68

70

73

75

71

79

82



FIGURE PAGE

23. Development of the Boundary Layer over a 2/1
Ellipse with Variable Pressure Gradient in
the Vertical Direction and Logarithmic
Outer Boundary Condition for
zo/b = L005 ¢ v 0 4 e 4 e e e e e e e s e e e o« . 87

24. Development of the Boundary Layer over a 2/1
Ellipse with Variable Pressure Gradient in
the Vertical Direction and Logarithmic
Outer Boundary Condition for
zo/b = 020 . . ¢ 4 ¢ . 4 e s e o e s s s+ .« . . 88

25. Development of the Boundary Layer over a 4/1
Ellipse with Variable Pressure Gradient in
the Vertical Direction and Logarithmic
Outer Boundary Condition for
zo/b = 005 . . v e e e e e e e e e e e e e

26. Development of the Boundary Layer over a 4/1
Ellipse with Variable Pressure Gradient in
the Vertical Direction and Logarithmic
Outer Boundary Condition for
zo/b = 0,020 . ¢+ 4 4 e e s e e e s e e e s oe . 91

27. Effect of Vortices on Development of Velocity
Profiles over the 2/1 Ellipse . . . + « « « . « . 94

28. Effect of Vortices on Velecity Profile at Top of
2/1 Ellipse with Different Roughnesses . . , . . 95

29. Effect of Wind Gradient on Climb and Descent . . . 101

viii




FIGURE PAGE
30. Roll Moment Induced by Cross Wind . . . . . . . . . 102
31. Vertical Distribution of the Ratio of Lift over

' Ellipse to Lift in Natural Wind . . . . . . . . . 104
32. Horizontal Variation of the Ratio of Lift over

Ellipse to Lift in Natural Wind . . . . . . . . . 106

Al. Geometry for Joukowski Transformation of Flow over

a Circular Cylinder to Flow over an Elliptical
Cylinder .« . o ¢ ¢ o ¢ ¢ o ¢ o o o s s o o o o o 120
A2. The Relationship of Differential Distances in
Cartesian and Elliptic Coordinates . . . . . . . 125
A3. Potential Velocity Components in Elliptical
Coordinates . . « ¢ o o ¢ o o o o o o o o o o o o 127

A4, Stationary Inviscid Vortices behind a Circular

Cylinder L] L] L] . * L] L L] L] L] L] [ L4 L] L L] L] L L] L 131

ix



Tl

T |

act

‘Re

< < i

|

NOMENCLATURE

Length o§ semi-major axis of the elliptical
cylinder measured parallel to the ground

Height of the elliptical cylinder

Coriolis parameter

Gravitational acceleration constant

Elliptical aspect ratio, a/b

Prandtl mixing length

Characteristic length used to nondimensionalize
equations defined as the ellipse height

Mean pressure term

Mean atmospheric pressure

Pressure damping function

Reynolds' number, (U_L)/v

Time

Friction velocity, vT,/p

Characteristic velocity defined by Equation 3 at
a height z = b

Potential velocity defined along an inviscid
streamline

Mean velocity in the x-direction

Mean velocity in the y-direction

Total velocity vector

Mean velocity in the z~-direction




Ax

by

At

Coordinate measured in the direction of mean flow
along the inviscid streamlines

Coordinate measured in flow direction .along the
surface of the ground

Numerical step size in the x-direction

Coordinate normal to the x-direction, parallel to
the ground

Coordinate normal to the X-direction along the
ground

Nﬁmerical step size in the y-direction

Coordinate in the vertical direction normal to the
inviscid streamlines

Coordinate in the vertical direction

Numerical step size in the z-direction

Surface roughness length

crﬂ

Boundary layer displacement thickness, ém[l - }dz

Eddy viscosity ©

Stretched coordinate transformed from the vertical
coordinate, z

Numerical step size in the r direction

Elliptical coordinate

Von Karman universal constant = 0.40

Length of forward separation region

Dynamic viscosity

Kinematic viscosity

Elliptical coordinate

Fluid density

xi



Shear stress

To Shear stress at the surface

) Velocity potential function

¢ Derivative of the stretching function

] Stream function

39 Rotational angular velocity of the earth

w Fiuid vorticity

Subscripts

© Condition in the undisturbed flow

2 Laminar flow quantity

m,n Numerical indices in the x and ¢ directions,
respectively

n.s,. Conditions calculated along nonseparating
streamline

s Slip condition at the surface

t Turbulent flow quantity

Superscripts

T Indicates trail value in iteration procedure

*

Dimensionless quantity

Turbulent fluctuation of mean flow quantities

xii




CHAPTER 1
INTRODUCTION AND STATEMENT OF PROBLEM

The localized flow fields induced around buildings
and other manmade obstructions by the surface winds have
long been of interest in structural design, but more
recently, atmospheric motion influenced by such obstacles
has becpme important in the design of airports, launch pads
and other landing facilities for aircraft and spacecraft.

Of particular interest, in view of the rapidly increasing
needs in commercial air transportation, is the development
of helicopter and V/STOL service in large metropolitan areas.
Because of the possibility of operating these aircraft from
the tops of buildings, the problem of analyzing building-
induced flow fields attains a new importance.

Many difficulties are involved in operating low speed
aircraft near buildings such as severe crosswinds, induced
vortex fields, regions of separated flow, and other unsteady
flow phenomena which make takeoff and landing extremely
hazardous. There are two possible approaches to minimizing
the dangers of these problems: the first is related to
improvements in the design of the aircraft and operating
procedures during takeoff and landing; and the second
attacks the source of the flow disturbances by modifying

airport design in an effort to reduce operational problems



created by the wind (1).l However, each of these approaches
requires a detailed knowledge of the flow field and turbu-
lence imposed on buildings and other structures near the
ground.

One method for satisfying this need for quantitative K
descriptions of localized flow fields surrounding aircraft
landing sites, is to make extensive measurements around
existing facilities, but the problémslof locating sensors in
the most advantageous locations to measure critical flow
parameters and the vast amount of data required for such a
description, make this method highly impractical. Further-

more, such detailed measurements around existing airports

are of little value in the design of new structures without
additional theoretical work to establish similarity relation-
ships between these fléw fields.

In considering elevated V/STOL ports, interest is
primarily concerned with the flow around buildings; however,

at present, investigations are limited to qualitative

descriptions of the effects qf isolated structures and
groups of buildings on atmospheric motions. A number of
these descriptions are given in References (1), (2), (3) and
(4) discussing such difficulties as three-dimensional
effects, separated and wake flows, induced vortices, the

effects of shear and interaction of turbulence with steady

lNumbers in parentheses refer to similarly numbered
references in the bibliography.
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flow phenomena, and other complexities which further empha-
size the necessity for theoretical approaches to the prob-
lems of atmospheric motion over surface obstructions.

In view of the above considerations and the importance
of such flows to aerodynamic design, the need for an analyt-
ical method for predicting local atmospheric motions
influenced by buildings and other surrounding topographical
features is obvious.

In formulating a model to completely describe this
complicated flow situation, the complete equations of motion
for turbhulent flow must be considered. However, practical
methods for carrying out a solution of such equations are
limited to numerical approaches which are at present in the
very early developmental stages (5), (6) and (7). Further-
more, the extremely high financial costs in computing time
and the restriction of these solutions to specific problems
limit the use of this method.

An alternative approach for approximating atmospheric
motions over surface obstructions is to extend the concepts
of boundary layer theory, which have been very successful in
describing aerodynamic flow over surfaces of small curvature
where viscous regions are thin. In meteorlogical work, the
boundary layer concept has been applied to wind flow over
changes in terrain roughness (8), (9) and (10) and wind
screens (11) and (12), by introducing the idea of the dis-
turbed boundary layer.

Consider a fully developed turbulent shear flow
3



approaching a discontinuity in surface coundition such as a
change in surface roughness, as shown in Figure 1. Because
the disturbance is convected downstream and diffuses
vertically, it is assumed that at great distances upstream
and large heights downstream of this disdontinuity, the flow
is unaffected by the change in surface roughness. The Ekman
layer may experience an adjustment in height through the
scaling relationship h ~ u,/f, where u, is influenced by Zgr
however, this is not expected to affect the flow appreciably
in the region of interest. This assumption leads to a region
of influence surrounding the downstream roughness, outside

of which the flow is characteristic of approach conditions.
Very near the ground, however, the boundary layer is governed
by local surface conditions with the outer flow exerting an
influence only through the boundary conditions between the
two regions (13).

Although the disturbed boundary layer concept holds a
great deal of promise, there is little evidence that this
approach has been applied to flow over buildings and other
surface obstructions. Therefore, the purpose of this study
is to investigate the use of this boundary layer concept in
approximating, the localized flow field induced around a
surface obstruction by the impinging wind. Although the
method developed within this study can, in general, be
applied to flow over any two-gimensional body, the solutions

given will be limited to semi-elliptical cylinders.
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CHAPTER 11

ANALYSIS OF ATMOSPHERIC FLOW OVER SURFACE
OBSTRUCTIONS BY THE TURBULENT

BOUNDARY LAYER APPROACH

In applying the concepts of boundary layer theory to
atmospheric motions over surface obstructions, the following
two-dimehsional model will be assumed. Consider a uniform
terrain of infinite extent on which a surface obstruction is
located in the form of a semi-elliptical cylinder as shown
in Figure 2. The elliptical contour is chosen primarily
because its geometry simulates low buildings or hills and
permits parametric variations of the aspect ratio. 1In
addition, the inviscid flow field around such an obstruction,
required for later analysis, is well established in potential

flow theory.

The Nature of the Approaching Wind

Assuming that the homogeneous terrain extends far
upstream from the elliptical obstruction, the viscous nature
of the atmospheric motion over the ground produces gradients
in the mean wind velocity. For conditions of neutral
stability experimental evidence (29) and (30) confirms that
the mean wind velocity in the region of the atmosphere
near the ground is described by a logarithmic expression

analogous to aerodynamic measurements of turbulent boundary

6
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layers. For smooth surfaces this logarithmic distribution

is given by the well known "law of the wall" (14),

a1 zu,
u—*-—"'z‘ln{\)}+c (1)

where x is the universal von Karman constant, C is another
empirical constant, and u, is the friction velocity defined

in terms of the surface shear stress as
Ugx = VTO;Q

This universal velocity distribution was first
obtained by Prandtl as a consequence of his classical con-
cept 'of the mixing length for turbulent shear flows. The
validity of Equation 1 implies a region of constant shear
near the wall in which the mixing length is assumed propor-
tional to the normal distance from the surface approaching
zero at the smooth surface. (A discussion of the mixing
length theory will be given in a later section of this
investigation.)

In considering the more general case of a rough sur-
face, the logarithmic velocity distribution given'above, must
be altered to incorporate roughneés into the flow near the
surface. Roughness is a characteristic of most natural
terrains which is generally described in terms of a vertical
length scale, z,- This length scale 1s related to the
height of the individual roughness elements, but is also

strongly dependent on the geometry and distribution of the




roughness over the surface. Typical values of z, are given
in Table I for different types of surface terrain.

The surface roughness causes an increase in the
dissipation of momentum near the ground by larger viscous
losses and more intense turbulent action. However, these
effects become important only for surfaces on which the
characteristic length, z,, exceeds v/u,. In this case, the
mixing- length does not vanish near the wall but approaches
the size of the roughness (15), and is given by the

following expression:
L= x(z + z) (2)

Assuming that the surface roughness is uniformly distributed
over the ground in a random manner, this relation for the
mixing length leads to a logarithmic velocity of the
following form:

1 z + zo
== &n — (3)

(o}

G,CI

Therefore, far upstream from the elliptical obstruction, the
flow field is described by the above equilibrium equation,

valid for flow over a uniform, rough surface.

Governing Equations for Atmospheric Flow

The governing equations for steady, mean incompress-
ible flow within the atmospheric boundary layer are well
established in meteorlogical literature (16) and are stated

in the following relationships:

9



TABLE I

ROUGHNESS LENGTHS FOR VARIOUS TYPES OF TERRAIN

Surface Roughness

Terrain Type Length (zo) in Meters
Ice and snow lOb"7 -7 x 1074
Smooth mud flats 10_5

Sand flats 4 < 107°

Bare soils 5 x 1074

Thick grass <0.10 meters 0.02

Thin grasé < 0.50 meters 0.05

Thick grass < 0.50 meters 0.09

Field crops, tall grass >~ 1 meter O.IQ - 0.14
Forests, houses 1.00 - 2.00
Cities 1.00 - 3.00

Source: G. H. Fichtl, "Can Turbulent Drag Force
Expansions Apart?" Paper presented at ASCE National Water
Resource Conference Engineering Meeting, Atlanta, Georgia,
January 24-28, 1972.

10




Continuity equation

du , v w o

Momentum equations

—9%u _ -3u_ -3u__1 3p 6 3 = -

usxtv oYy M T Py 9% *3z k2 T fv (5)

=3V , -V -3 _ _1 3,09 = _ =

Ugx " Vayt* ¥z~ Po Y T 37 Tyz fu (6)
— = - . T - T

— oW — ow =9w _ _ 1 3 I = s)

Yax v 3y v 3z Po 9z * 9z Zz M g[ To (7

where f is the Coriolis parameter, T is a shear stress, po
and To denote the density and temperature consistent with an
adiabatic atmosphere. The stresses due to eddies lying in
the horizontal plane (i.e., 7. , T x) have been neglected in

Xy Y
comparison with the stresses arising from eddies lying in

the vertical plane (i.e., Tz and Tyz). The bar over the
dependent variables indicates an ensemble average. In con-
sidering flow in the lower regions of the atmosphere certain

assumptions and simplifications can be made in these equa-

tions and will now be discussed in detail.

Coriolis CEffects in Atmospheric Shear Flows

The terms in Equations 5 and 6 given by fu and fVv
represent the apparent forces produced by  the Coriolis
effect on atmospheric motions. Below 30—50 m the shear
viscous forces predominate and the Coriolis forces are

generally neglected. This is discussed by Tverskoi (15)

11



who argues that below a few tens of meters the integral term
in
3
(z) - 1(z=0) =£f£/ (u-u.)dz
o )
obtained by integrating the equations of the geostrophic
wind, is less than 10 per cent of the shear. For atmo-
spheric flow which occurs over much larger distances, the
effects of the rotation of the earth must be considered
however. The coordinate system on the earth is constantly
accelerated in an inertial frame (fixed reference frame
relative to distance stars), hence, motions which are
actually in straight lines in the fixed coordinate system
appear from the ground to travel in a curved path. The
fictitious Coriolis force in the relative frame of reference
accounts for this apparent deflection. In magnitude the
Coriolis force is a function of the earth's angular velocity,
2, and the geographical latitude, ¢, and is proportional to
the velocity of the motion considered. It deflects the
velocity in a horizontal plane to the right in the Northern
Hemisphere and in the opposite direction in the Southern
Hemisphere acting perpendicular to the velocity vector, as

shown by the®'following relation:

>
F, = [20 sin ¢] V x k= £(Vx k)

where i is the unit vector in the vertical direction and £
is the Coriolis parameter.

With the magnitude of the Coriolis force determined

12




primarily by the velocity of the wind, its relative impor-
tance in contributing to the momentum of the flow can be
examined by conéidering the other dominant forces which act
upon the atmosphere. Outside of the viscous region of the
atmosphere, which generally extends to a height of about one
kilometer, the motion of the wind is to a sufficient degree
of approximation determined by a balance of the Coriolis
force and the pressure gradient. However, as the effects of
friction become significant within the boundary layer, the
mean wind speed decreases causing the effects of the Coriolis
force to also decrease. The balance of forces which deter-
mines the momentum of the flow within the boundary layer
includes the pressure field opposed by a combination of the
viscous and Coriolis forces. Very near the surface, where
the velocity approaches zero, the Coriolis force becomes
ﬁegligible, and the atmospheric motion is determined by a
balance of the pressure gradient and the viscous forces. As
‘a result of this change in the relative magnitude of the
Coriolis and shear forces, two distinct regions can be
identified within the atmospheric boundary layer: an inner
layer extending from the ground to a height of about 50
meters, in which the surface exerts the predominate influence
on the flow; and an outer region whose structure is primarily
determined by the Coriolis, pressure and shear forces.
Therefore, in view of the physical situation which
exists ip the lower region of the atmospheric boundary layer,
the Coriolis term in the governing equations for flow over a

13



surface obstruction can be neglected, permitting a simpli-

fication of the equations to the followiny two-dimensional

form:
su |, ow _
i 3T - 0 (8)
S8, 520 . 1 B, YTxe )
Ix dz s dx 9z
gL g1, T (109
X dz Py 92 0z

Approximation of the Reynolds' Stress by Turbulent Viscosity

The turbulent boundary layer equations given by Equa-
tions 8, 9 and 10 are obtained from the Navier-Stokes equa-
tions by a method first proposed by Reynolds, in which he
considered the instantaneous turbulent motion as a sum of a
mean flow component and a randomly fluctuating component,

given by
u(t) = u + u'(t), etc.

Introducing the Reynolds' assumption into the Navier-Stokes
equations and statistically averaging the instantaneous
motion over the ensemble of realization,* the equations for
general turbuleht motion are obtained in which certain com-
binations of the fluctuating component arecontained as

shown in the following relationships:

wfjw
><‘L3I
+
SH
il
o

———

*
In practice the ergodic hypothesis is used and

enserkble averages are estimated with time averages.
14




(— 2T, = ah‘] 3p %G 2%
pP.|u x5 + = = - + u + u
ol X 0z 9X Bzz 5z 3x
f \
_~ |2u’ 3uw! |
pO[ 5% T T3z }
— - 2—
— W |, =3w] ) 3
p u — + falbehds = - + 2u
0[ X zJ 02 5z
_ ou'w’ w2 + T -7,
Pol T ox 9z g T,

These equations are known as the Reynolds' equations for
turbulent .flow in which the last group of terms on the right
side can be interpreted as additional components of the
stress tensor, called the Reynolds' stresses. Simplifying
these equations, based on an order of magnitude analysis,
results in the boundary layer equations given by Bguations
8, 9 and 10 in which the Reynolds' stresses‘are reduced to
one term, pu'w', which is associated with an increase in the
shear of the fluid.

However,. in order to close this set of boundary layer
equations, 1t is necessary to relate this additional stress
to the mean flow. This is generally done by considering an
analogy between the viscous shear which exists on a molecular
scale and the turbulent shear resulting from the momentum
transfer of macroscopic fluid particles. Accordingly, the
Reynolds' stress is said to be the result of an eddy vis-
cosity, €, which is related to the mean flow by an expres-
sion analogous to the Stokes hypothesis for laminar shear
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stress,

_ du
Ty = PV 37

- oTTWT = o QU
Tt pu'w pE 3z

This approach in relating the turbulent fluctuations
to the mean flow through the concept of the eddy viscosity
has been used extensively in describing many turbuleht flows;
however, it is limited in usefulness by dependence on

empirical correlations of specific flow situations.

Empirical Models of Eddy Viscosity

The concept of the mixing length. The development of

expressions for the eddy viscosity relating it to parameters
of the flow, is generally based upon Prandtl's concept of
the transport processes involved in turbulence by relating
the turbulent fluctuations in velocity to the mean flow
through the idea of a mixing length.

Prandtl visualized turbulent flow as a random motion
of macroscopic "lumps" of fluid which continually form and
move through the fluid certain distances before being dis-
persed into the surrounding fluid. The distance over which
these fluid "lumps" retain their original prOpérties before
coming into equilibrium with their surroundings is termed
the mixing length, %. A transfer of momentum, for example,
cén océur.during this exchange process, resulting in a

variation of the mean velocity at a particular location.
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Consider two adjacent layers of fluid moving at different
velocities, as shown in Figure 3, in which the mean flow is
in the x-direction. The mean velocity is specified as u at
a distance z from a surface and can be approximated at the
adjacent layer by the positive velocity gradient as u + £
(du) /(dz). Consider the motion of a fluid particle from the
position z to z + % under the influence of a positive fluc-
tuation of velocity, w', in the transverse direction. Since
the momentum exchanged during this transfer of fluid results
in a decrease in the velocity at z + &, Prandtl assumed that
the momentum of the fluid particle remained constant so that
the turbulent fluctuation in the horizonal velocity was

given by the difference in velocity of the two layers as

-1 _ . du
-(U)—JLEE

, ——
u' = l(ﬁ'+ 2 g%)

Further assuming that the transverse fluctuation, w', is the

same order of magnitude as u', it is given by

Absorbing the constant C into the unknown mixing length, the

Reynolds' stress is given by

aa
dz

du

Iz (11

2
_ — _ 2idu _ 2
Tt = pu'w' = p (HE = pl

with the eddy viscosity as
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Figure 3. Turbulent mixing length concept.
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In the neighborhood of a wall, the mixing length is
generally assumed to be linearly related to the normal dis-

tance from the surface

yielding the following expression for the eddy viscosity

2|du

=% dz

™
|

2 2|du
z |dz {12)

where « is the universal von Karman constant generally
assumed as 0.4. Applying this approximation of the mixing
length to the turbulent shear stress near the wall, gives

aa
dz

ag
dz

2 2

T, = px°z (13)

Assuming this shear stress is constant in a region next to
the wall, Equation 13 can be integrated for the mean velocity

profile
u = %i tn z + C (14)

The above logarithmic expression, as previously
mentioned, is valid for turbulent flow over smooth surfaces,
in which the mixing length approaches zero at the wall.
However, for very rough surfaces the mixing length does not

decay to zero near the ground, but approaches a size on the
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order of the roughness length, Z, e and is given by the

following relation

L = k(z + zo)

Therefore, the eddy viscosity over rough surfaces becomes

_ 2 2 |du
e =k (z + zo) Iz (15)

leading to a logarithmic velocity distribution of the

following form, previously introduced in Equation 3:

Since rough surfaces are characteristic of most natural
terrain the eddy viscosity model used in the calculations
carried out in this study is given by Equation 15.

However, in verifying the numerical solution for
turbulent boundary layer calculations, it is necessary to
consider aerodynamic data of which a majority is obtained
for flow over smooth surfaces requiring more sophisticated
models of the-eddy viscosity. Therefore, returning to Equa-
tion 14, it is evident that very near the wall the predicted
logarithmic velocity is not valid because it does not
approach zero at the surface. This is a result of the fact
that the dampening effect of the wall is not taken into
account. In actuality there exists a very thin layer next
to the surface in which turbulence is no longer a factor
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and the shear stress is predominately determined by molec-
ular viscosity. In this region, known as the laminar sub-
layer, the eddy viscosity can be assumed zero. The thick-
ness of the sublayer is generally obtained from empirical

relations (14) as approximately

zZgy < 5 T (16)

Van Driest eddy viscosity model. The condition that

the eddy viscosity abruptly becomes zero at a height above
the surface given by Equation 16 is an oversimplification of
the physical situation. To overcome the arbitrary nature of
this assumption, Van Driest (17) proposed that the turbulent
viscosity approach zero exponentially near the surface, by

modifying the Prandtl mixing length as follows:

2 = «z{l - exp(-z/A)]
where
A = 26v
¢107p

The Van Driest mixing length, valid for flow over a
flat plate, was extended by Cebeci and Smith (18) to include
the effects of a pressure gradient on the eddy viscosity.
From the momentum equation, they approximate the shear
stress close to the wall by

7 =T +ng
o . dx

—_—

21



Defining A as (26v)/(/7/p), the mixing length can be

expressed as

oN

{ \
T )
2 0 d
L= Kzil - exP[m\/’p“ -
e

and the modified Van Driest model for eddy viscosity becomes

22[ f T

£ = xz )l - exp(— 7%3(53 + QE

2
1/2}
] } . g—‘% (17)

DN

dx

~

Although the above expression for thé eddy viscosity
is physically more realistic near the wall, in the outer
regions of the boundary layer the surface no longer exerts
the predominant influence on the flow., It is well docu-
mented by experimental evidence (14) and (18) that at
certain distances from the boundary, the velocity profile
deviates from the logarithmic form given by the mixing
length theory. This is a result primarily of a decrease in
the influence of the wall on the characteristics of the
turbulence, causing the outer region of the boundary layer
to approach a free turbulent flow, in which the eddy vis-
cosity becomes constant. Therefore, Clauser (19) assumed
that in the outer region of the viscous flow the eddy vis-
cosity 1s related to the overall parameters of the boundary

layer by
€, = KUy 6 (18)

where ¢* is the displacement thickness.

22




However, due to the highly fluctuating nature of the
regiop separating the fully turbulent boundary 1ayér from the
relaéively‘tu;bulent-free external flow, the constént vis-
cosity given by Equation 18 should be modified by a damping
factor experimentally determined from the intermittency
factor of Klebanoff (20) as

1

y = {1 + 5.5[%}6!

Separation of the inner and outer regions of the boundary
layer is established by continuity of the eddy viscosity so

that

There are numerous other empirical models for eddy
viscosity, but those considered in developing the turbulent
boundary layer solution presented in this study are as
follows:

1. Prandtl mixing length model.

2; Van Driest mixing ‘length model.

3. Van Driest model with the outer layer of Clauser.

Conservation of eddy viscosity. A more recent theory

for determining the eddy viscosity from mean flow parameters
was advanced by Nee and Kovasznay (21) in which they con-

sider the viscosity as a quantity which is conserved during
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Lthe turbulent exchange processes. This method has been out-
lined in Appendix C together with a numerical technique for
incorporating it into the present boundary layer program.
Preliminary investigation of this method has shown some
promise; however, further work is necessary to determine its

usefulness nver the simpler mixing length models.

Consideration of the Pressure Force in the Boundary Layer

Equations

Incorporating the assumptions introduced in the pre-
vious sections concerning the Coriolis effect and the eddy
viscosity, and applying the classical boundary layer order

of magnitude analysis the equations become

du |, 9w _

x T3z 0 (19)
s du  =23u_ _13p_ 3 ( du

Ukt Yoz T T Eax ol eg (20)
op

P - g (21)

N

These equations have been very successful in
describing flow fields over aerodynamic surfaces; for which
the viscous regions are very thin relative to the character-
istic dimensions of the body. In fact, the derivation of
the boundary layer equations from the Navier-Stokes rela-
tions from an order of magnitude analysis requires the
viscous region to be thin. However, despite the condition
of a thin viscous region, boundary layer analyses have been

applied to cases in which the boundary layer thickness was

24




on the order of the dimensions of the body but yielded good
agreement with experiment, as shown in Reference (22). This
tends to indiéate that the application of boundary layer
theory is not limited to confined regions of a flow field
near a bodj.

One of the most significant resulfs of the thin
boundary layer assumption, as shown by Equation 21, is that
the pressure field within the viscous region becomes inde-
pendent of the coordinate normal to the flow. This result
is important in establishing a solution of the thin boundary
layer equations, because the pressure imposed on the flow
can be obtained from the potential pressure distribution
along the surface of the body and is a known quantity in the
boundary layer equations.

However, in considering atmospheric flow over a sur-
face obstruction, the thickness of the boundary iayer is
generally many times greater than the height of the obstacle.
Thus, the pressure disturbance produced by the body is con-
tained within the viscous flow and no well defined outer
inviscid flow field exists as in aerodynémic problems. This
difficulty can be resolved, however, by considering the con-
cept of the disturbed boundary layer introduced in Chapter 1I.
Assuming that the region of influence which surrounds the
body is contained within the atmospheric boundary layer, the
equations which describe the motion over the obstruction are
no longer dependent on the flow field which exists outside
the viscous region, but become a function of the boundary
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conditions. and pressure field which are given within the
shear flow.

Therefore, to adapt the boundary layer equations to
very thick viscous regions containing variations in pressure
normal to the flow, the streamwise preséure gfadient’of
Equation 20 can be interpreted as some average pressure
force which is representative of the distribution of this
gradient through the boundary layer. In order to determine
how the horizontal pressure field over the obstruction varies
in the vertical direction and to examine the effects of this
term on the equations, the potential pressure distribution
along the streamlines over the elliptical cylinder will now
be considered.

, Applying the potential flow theory outlined in
Appendix A, the pressure and inviscid streamlines can be
calculated as given in Figure 4 for the 2/1 aspect ratio
ellipse. First, consider the pressure variation along the
surface or zero streamline. Approaching from upstream, the
pressure increases from the free stream value to a maximum
along the leading edge and then rapidly decreases below
ambient conditions to a minimum at the top of the ellipse.
Since the potential flow is symmetric about the minor axis
of the ellipse, the identical pressure distribution exists
on the downstream side of the cylinder. However, the
gradient of the pressure is not symmetric about this akxis
but is an odd function of the streamwise coordinate, x.

This will become important in later discussions in
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considering thc¢ magnitude of the adverse pressure fields up-
stream of the ellipse approaching the forward stagnation
point and on the downstream face of the cylinder from the
top of the ellipse to the trailing edge. It is obvious from
Figure 4 that the latter pressure gradient is much more
severe and will have a significant effect on the viscous
flow.

Applying the potential pressure along the surface to
the bounaary layer developed far upstream on the horizontal
terrain, a qualitative picture of the viscous flow field
over the body can be obtained. Approaching the obstruction
from upstream, as illustrated in Figure 5, the large increase
in pressure causes deceleration of the flow and thickening
of the internal boundary layer. As the pressure:gradient
bé&comes increasingly more severe, the momentum of the fluid
becomes very small until the boundary layer is no longer able
to remain attached to the.surface, (point A). Further down-
stream, the flow is accelerated by the decrease in pressure
over the front face of the ellipse causing the boundary
layer to reattach to the body at point B. From this point
the flow continues to accelerate to the top of the cylinder
where the adverse pressure field on the rear side again
forces the boundary layer to separate at point C. Much
further downstream the pressure field begins to recover from
the severe gradients discussed abovefand returns to ambient
conditions causing the flow to reattach once more (point D)
and readjust to the conditions along the horizontal surface.
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The areas of the flow field enclosed by streamlines AB up-
stream of the ellipse and CD on the downstream side are
separation regioné in which the flow is recirculated,
tending to become stagnant with the velocity near the sur-
face in the opposite direction to that in the outer flow as
illustrated by the profiles in Figure 5. This separated
flow region is an extremely complicated motion which cannot
be predicted by a boundary layer analysis. Therefore,
additional assumptions must be made about the adverse pres-
sure field which produces this separated flow to enable the
boundary layer solutions to be computed over this region to
the top of the ellipse.

Comparing the variation of the streamwise pressure
distribution along different streamlines above the surface,
as shown in Figure 4, page 27, it can be observed that as
the distance from the body increases, the severity of the
pressure gradient decays until outside a certain streamline,
the adverse pressure upstream of the body no longer causes
separation of the flow. Since the pressure field near the
surface primarily determines the flow within the separation
region, it is reasonable to assume that the pressure gradient
given along this nonseparating streamline is more character-
istic of the overall flow which actually negotiates the
obstruction. With this in mind, the boundary layer analysis
proposed in this study was carried out with the assumption
that the flow outside the separation region is governed by

an average pressure field given by :at calculated along the
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first nonseparating streamline over the elliptical body.

Improved Approximation of the Vertical Pressure Field

The assumption of an average pressure grad%ent which
is constant in the direction normal to the flow is expected
to be a good approximation of the conditions which exist in
a region near the body; as will be substantiated in later
discussions concerning the results of calculations carried
out over the elliptical cylinder usipg this mean pressure
distribution. However, if interest lies in flow fields much
further removed from the surface obstruction, a more physi-
cally realistic pressure field is suggested by the fact that
the pressure gradient approaches zero far from.the body.
Therefore, for boundary layers which extend well above thea
obstruction, an improved pressure field would be one which
decays in the vertical direction from the initial value
determined along the nonseparating streamline to zero as the
distance from the body approachés infinity. This type of
pressure variation will permit a matching of the flow within
the region of influence of the body to the outer undisturbed
logarithmic profile. Under this assumption, the fogm of the
pressure distribution introduced into the boundary layer

equations is given by

dE(le) _ [dp(x) .
dx - {dx ] q(z)
ns

where [(dp)/(dx)]ns is the pressure. gradient given along the
nonseparating streamline, and g(z) is the vertical decay
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function, which will be discussed in more detail in a later

section.

Boundary Conditions

The governing equations described in the preceding
sections are complete only when the proper boundary condi-
tions along the surface and matching conditions with the

>

outer flow are specified.

Lower boundary conditions. Along the lower boundary

the no-slip condition will generally apply, and thus the
mean velocities and turbulent fluctuations approach zero
near the ground. However, the roughness associated with the
surface also has an influence upon the flow in the vicinity
of the lower boundary. One effect is to increase the tur-
bulent motion, as noted previously, by assuming a larger
mixing length at the surface. An additional effect of the
rough surface is caused by the separation of the flow on a
very small scale from the i1ndividual roughness elements
which increases the dissipation of momentum due to larger
form drag over the surface. Since neither of these effects
are accounted for by the simple no-slip condition, it is
assumed that the logarithmic velocity distribution given by
Equation 3‘applies in a very thin layer next to the surface
in which the shear stress is assumed constant, as shown in
Figure 6. With this boundary condition the influence of the
surface roughness on the velocity can be incorporated into

the solution of the boundary layer equations.
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Figure 6. Flow over a rough surface.
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Outer boundary conditions. The outer boundary condi-
tion usually imposed on classical boundary layers is the
potential velocity along the surface streamline of the body.
This assumption is based on the fact that the boundary layer
is extremely thin and the surface curvature is not large.

For the problem at hand, however, the pressure distri-
bution over the body is not assumed to be that corresponding
to the potential flow along the surface streamline but that
corresponding to the first streamline for which separation
at the front of the ellipse does not occur. The outer
boundary condition is therefore taken as the potential
velocity,.Ue, along this first non-separating streamline.
Physically one defends this assumption by arguing that the
flow which negotiates the body avoiding the separation region
is driven by some average pressure characterized by [Ue g;S]ns
and the velocity scale for the disturbed shear region or
internal boundary layer is Uepg* Although it is known that
far from the body the velocity must return to the logarithmic
profile of the undisturbed flow it is expected that Uens may
represent the peak in the velocity profile and the solution
corresponding to this boundary condition might be valid very
near to the wall. Later refined calculation shows this
region extends to a height on the order of z/b = 0.5. A
number of solutions were carried out utilizing this boundary
condition and pressure distribution and are expected to be
representative of the flow very near the body.

However, once again considering flow fields at

larger heights, the outer boundary condition must be
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recons idered 1n light of the rapid decay ol the pressure
field which exists in the greater region of influence above
the surface obstruction. Since the flow tends to return to
tbe logarithmic form as the effects éf the obstacle become
negligible,‘a more realistic outer boundary condition
matching the outer undisturbed flow.with the boundary layer
developed over the body would be given by the logarithmic
velocity distribution. Therefore, in gonsidering the flow
field in a larger region above the elliptical cylinder, the
outeriboundary condition used in connection with the decay-
ing pressure field is given by the logarithmic velocity
characteristic of the undisturbed flow at an arbitrarily

selected elevation.

The Effect of Separation Regions on the Boundq{y Layer

The separation regions which exist upstream and down-
stream of the elliptical cylinder, as shown in Figure 5,
page 29, are due to the strong adverse pressure gradients
near the surface which have been neglected in the initial
solutions to be presented because the pressure field is
approximated along the nonseparating streamline. For this
reason the boundary layer equations can be integrated over
the forward separation region without regarding the effects
it produces on the flow. However, this method cannot be
extended over the rear separation bubble because the adverse
pressure gradient along the same streamline becomes much

more severe on the downstream side of the body and prevents
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the computational scheme from negotialting this region.  As
discussed previously in comparing the magnitude of the
positive pressure gradients shown in Figure 4, bage 27, the
much larger pressure forces occurring downstream signifi—
cantly affect the boundary layer flow, so that in order to
apply the present 1ntegration technique over the rear
separation region, the pressure field must be obtained from
an inviscid streamline very far from the body. Since the
pressure gradients downstream will be greatly reduced, the
solutions are no longer believed to give a meaningful
description of the disturbed flow field created by the sur-
face obstruction. Therefore, the solutions given in this
study for flow over the elliptical body are carried out only
to the top of the cylinder.

To incorporate some of the influence of the separa-
tion regions on the pressure field near the surface and to
obtain a more realistic boundary condition on the velocity
over these regions, some preliminary solutions have been
computed with the recirculating flow of the separation
bubbles simulatéd by stationary, inviscid vortices calcu-
lated from potential flow theory (23). Although not dealing
directly with the flow within these regions, this technique,
outlined in Appendix B, gives an improved approximation of
the pressure field imposed on the flow by the elliptical
cylinder. A typical result of this calculation is given in
Figure 7, showing the 1inviscid streamlines over a 2/1 aspect
ratio ellipse with attached vortices together with the
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potential velocity distribution along these streamlines. 1In
addition, the potential velocity along the nonseparating
streamline over the same body without vortices is also shown
for comparison purposes.

Despite the improved approximation of the pressure
field obtained with this model which includes the effects of
the separation regions, the adverse pressure gradients
associated with the flow approaching the stagnation points A
and B are still sufficiently severe near the body to prevent
the boundary layer calculation from negotiating these
regions. Therefore, the applicable pressure distribution is
again assumed to be given along an outer streamline over the
vortices for which the pressure gradient does not produce a
condition of separation in the boundary layer solution.
Aithough this pressure field still does not simulate that
given along the surface, it does include a part of the
significant influence of the separation regions on the
boundary layer which is neglected by the initial approxima-
tion of the pressure gradient over the elliptical cylinder.

In addition to the effect of the vortices on the
pressure field, the potential velocity along the streamline
dividing the separation region from the outer boundary layer
can be incorporated into the flow field developed over this
region as a lower boundary condition. Since the velocity
which physically exists in the vicinity of the dividing
streamline does not approach zero, the slip-velocity provided

by this potential solution is a more realistic measure of
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the lower boundary condition affecting the eqhatiops than
that previously introduced for the calculations made over
this region. However, the potential velocity calculated
over the vortices, as shown in Figure 7, page 37, approaches
free stream values at its maximum between the stagnation
points on the dividing streamline. Since this characteristic
of the potential solution is a result of the effect of the
vortex on an inviscid fluid, the viscous dissipation Ghich
actually occurs in this region decreases the potential
velocity, and therefore, the lower boundary condition
assumed ffom this model will be a fraction of the inviscid
velocity, which has been chosen for the calculations made

with this method as 0.25.

Curvilinear Effects of the Streamline-Oriented Coordinate

sttem

Since the pressure gradient imposed on the boundary
layer is given along the inviscid streamlines over the
elliptical cylinder, the coordinate system used must also be
oriented along these streamlines resulting in a curvilinear,
orthogonal system, as shown in Figure 8a. The curvature of
this coordinate system is smail throughout the region sur-
rounding the ellipse, except in the vicinity of the upstream
and downstream stagnation points where the slope of the sur-
face is discontinuous. This is important in view of the
fact that the boundary layer concept is generally assumed to

be a first order approximation of viscous flow and neglects
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the higher order effects produced by body curvature. There-
fore, the accuracy of the present boundary layer analysis is
éxpected to deteriorate in the vicinity of the stagnation
regions but be relatively good upstream of these regiéns and
on top of the ellipse.

Moreover, since the flow field wiéhin these stagna-
tion regions has been neglected by the assumption, pre-
viousl§ discussed in Chapter I1I, of a pressure distribution-
imposgd on the flow as given by that along the ndnseparating
streamline, there is little value in modifying the boundary
layer equations with the additional complications of a
curvilinear coordinate system. Consequently, the calcula-
tions have been carried out in Cartesian coordinates (x,y)
as shown in Figuré 8b. The x-direction is measured along
the inviscid étreamline with the y-axis extending perpen-
dicularly to it at each x-point. The velocity profiles
calculated in this coordinate system are then assumed to
exist physically on the surface, which is a reasonable
assumption because the geometrical effects of the body on
the flow enter the equations only through the pressure
gradient. However, because of the assumptions made about
the pressure distribution and curvature effects over the
stagnation regions, the interpretation of the velocity pro-
files calculated in these areas of the flow field is diffi-
cult to apply physically. Consequently, the profiles
presented within this investigation are those in the regions

of flow upstream and on top of the ellipse where the
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solutions are considered to be the most meaningful,

neglecting the profiles calculated over the separation

regions.
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CHAPTER III

NUMERICAL SOLUTION OF THE TURBULENT

BOUNDARY LAYER EQUATIONS

The turbulent boundary layer equations together with
the boundary and initial conditions and the assumption of an
eddy viscosity model to relate the turbulent motion to the
mean flow variables, form a closed seF of nonlinear, para-
bolic, partial differential equations given by Equations 19
and 20. This set of equations must be solved by nﬁmerical
methods which will now be introduced. Approximating the
pressure gradient term by the inviscid pressure distribution
along the nonseparating streamline, the Bernoulli equation

can be used to relate this term to the potential velocity as

follows:

5 dx e 3x (22)

Adopting some characteristic length, L, and velocity, U_.

from the flow field over the surface obstruction, these

equations can be nondimensionalized into the following form:

a -k
5y 3"’* =0 (23)
dX 9z
—* —x au* —*
3 , >
ot M Bu* vl =+ 13 @1+ endn (24)
X 3z ax* Re* 5z2* ¢ ' 3z
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where the dimensionless quantities are indicated by stars as

— u * X
= e— X = =
U, L

— w *
w =[—J—— VA =E
© L
* Ue * €
U = m— € = —
e U, v

and Re denotes the dimensionless parameter defined as the

Reynolds' number by

c

L

[+
e = e
\Y)

Dropping the dimensionless notation and expanding, the

equations to be solved are given by

ou ow

'a—x-'*‘E:O (25)
- — du 2 -

- 9u - ou _ e 1l (97u,. du ode€

“'a";‘“w—z—ued‘r*'ﬁz(_;i”*“*a—z‘-z (26)

A transformation of the vertical coordinate, z, which
will compress the vertical length scale near the wall where
the velocity gradients are the most severe, is now intro-
duced into the governing equations in the form of a stretch-
ing function ¢ = f(z). Applying this coordinate transforma-

tion to the vertical derivatives results in the following

relations:

9 _ -, 9
-a—z~— f (Z)E
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Defining the functions

¢ (2) = £'(2) = £'[g(Q)]; &, (g) = £'[g(z)]

the boundary layer equations become

du oW _
A T’ (27)
-~ ~ du 2— —
= Ju — su _ 1 2 27u Ju
Bax t Y oo T Ue ax "iz‘l’“e’(“’la—g*“’z“zl
3
2{su oe}|

The stretching function, z(z), used in the calcula-
tions presented in this investigation, is given by the

following quadratic relation:

z = lgz + mg + n

in which the constants £, m and n were adjusted to most
efficiently space the calculation points through the boundary

layer.

The Implicit, Finite Difference Technigque for Solution of

the Boundary Layer Equations

Assuming that the flow field over the elliptical
cylinder is represented by the Cartesian grid given in

Figure 8b, page 40, the equations of motion can be solved by
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approximating derivatives by finite differences expressed

in terms of the nodal points of this grid. This numerical
approximation results in a set of finite difference equa-
tions involving the unknown velociz:ies at nodal points along
an x-station, m + 1, in terms of known values at the pre-
ceding station m. Specifically, the equations are written
in finite difference form at each point of the unknown m + 1
station using the following expressions for the x- and z-

derivatives:

gg] _ Yn+l,n ~ Ye,n
BX’m+l,n Ax
§_g} _ Ym+l,n+l " “m+l,n-1
9 m+l,n eht
8 u) - m+l,n+l B 2um+l,n + um+l,n—1
2 ;
m+l,n (AZ)

However, since the momentum equation of the boundary
layer is nonlinear in the inertial terms, an iterative pro-
cedure must be introduced into the above numerical method.
Iritially, the values of the velocity at the known station m
will be used to linearize the equations at m + 1. Numeri-
cally solving the system of eguations at m + 1, this solu-
tion can then be used o linearize the momentum equation for
& second iteration. Continuvirg this process by repeatedly
linearizing the boundary layer eguation with successive
solutions for the velocity at m +'1 until convergence is

achieved, results in the numericzl solution of the flow
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field at this x-station. Proceeding downstream to the next
station, m + 2, this method can be repeated by using the
converged solution at m + 1 to initially linearize the equa-
tions at m + 2 continuing the above iteration procedure
until convergence of the solution at m + 2 is reached. 1In a
similar manner this numerical procedure can be marched down-
stream over the entire flow field obtaining the turbulent
boundary layer solution.

Returning to the details of the numerical solution,
the iterative technique and the finite difference approxima-
tions can be introduced into Equation 28, resulting in the
following algebraic expression of the boundary layer equa-

tions at a point (m + 1, n):

uT . um+1,n— um,n b . wT . um+l,n+l~um+l,n—1
m+l,n Ax 1 m+l,n 2A¢
T
!
LN L+ eel,n .2
= Ve gx! “Re Y
¢ m+1
u -2u +u : 1 +'eT’
m+l,n+l m+l,n “m+l,n-1 + m+l,n ¢
lAc)z Re 2
- 12 - T
. um+l,n+1 um+l,n—l + D égl
2AC Re aC'm+1,n

u - u
m+l,n+l m+l,n-1

2402

(29)

where the superscript T indicates a trial value from the
preceding iteration. Rearranging into the following general
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form, Equation 29 becomes

2<n<N -1 (30)

where the expressions An’ Bn' Cn and Dn are given by

T
A wrl‘ - Ax 1 + €m+l,n
n m+]_,n 1 ZAC Re
2
. (12 Ax g . obx_p fl . {35 ]T . bx
' ae? 2 oagl Re BT pay g 280
T
B ut P fmiln . o2 . 20X
n m+l,n Re 1 ij
|11
C = wT - ¢ AX L+ m+l,n
n m+l,n 1 240¢ Re
2
. lldlz o =2 L 4 . é5_| + i |/2_‘_\|T /_3}_(__
LA 2 23% e 9.1, 2b7
’
T [ du
D = u “u o+ lu o® T obx
" mlon mnoce dx iy

Applying these equations at each of the nodal points
between the surface and outer boundary conditions, results
in a system of N - 2 algebraic equations as mentioned above.
This set of simultaneous equations yields a tridiagonal
coefficient matrix which can be solved by an efficient

matrix inversion technique involving the following recursion

formula:

n Enun+l + Fn or un-]_ = En—lun + Fn-l (31)

c
|
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Substituting into Equation 30,

+ 4 =
Anun+l Bnun + Cn[En-lun + 1:'n—l] Dn
and solving for u,
= “ApUnel + Pn - ChfFna
n B + CE B + CE
n n n-1 n n n~-1
the unknown coefficients En and Fn become
_An
En " E T CE (32)
n n n-1
F_ = °n ~ “n'n-1 (33)
n B + CE
n n n-1

which with Equation 30 define the velocity profile at sta-
tion m + 1, providing the proper boundary conditions are
specified.

The lower boundary condition of a no-slip velocity at
the wall is incorporated into Equation 31 to yield values of
El and Fl of zero. Using these initial values En and Fn can
be calculated through the boundary layer by Equations 32 and
33. The outer boundary condition is used in Equation 31 to
initiate the calculation of the velocities toward the wall.
However, 1n order to lncorporate the conditions imposed on
the velocity by the surface roughness, the above numerical

procedure must be altered in calculating the velocities near

the wall by applying the logarithmic velocity distribution
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to the points closest to the lower boundary. Recalling that
the logarithmic law implies a layer of constant shear, as
shown in Figure 6, page 33, the friction velocity, ux, will
also be constant in this region. Therefore, assuming the

value of u, 1s given by

ku(3)

z(3) + z
o

|
&n | ZO }
{ )

the velocity at point 2 can be calculated by the logarithmic

law as

and u(l) will remain zero at the wall.

In summary, the method for calculating the velocity
profile at m + | 1s:

1. Calculate An’ Bn, Cn and Dn from known values.

2. Calculate B and ry by Equations 31 and 32

starting with n = 1L ton =N - 1, with El =0,
bl = 0,
3. Calculate u(n) inward from the outer boundary

condition to n = 3 by Equation 30.
4. Calculate u(2) by the logarithmic law.
The velocity profile in the vertical direction can be
obtained by integrating the continuity equation given by
Equation 27 using the velocity profile calculated above.
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W=-. =—dz

— ’aﬁl
wlg) = —f — (1/%,)de
A lax m+1 1

Approximating this integral by the trapezoidal rule, the
vertical velocity component can be calculated by successively

solving the following equation from the wall to the outer

edge,
_ lf 1 'um+l,n—1 um,n-l
wm+1(€n) W(Z:n--l) - §t¢l(cn~l) { Ax !
¥ ¢1(in) (umﬂ'ﬁx um'nll' Az

The above equation together with Equations 30, 31 and
32 and the boundary conditions give the numerical solution
of the boundary layer at station m + 1, after a suitable
model of the eddy viscosity and pressure distribution have

been introduced.

Comments on Convergence and Accuracy of the Numerical

Solution

In developing the numerical solution of the turbulent
boundary layer equations, outlined in the prgvious section a
balance between the convergence and accuracy required in the

solution and the amount of computing time necessary to meet
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these conditions must be consider -¢. One of the most
important factors affecting this balance is the grid spac-
ing, Ax and Az, employed in approximating the derivatives by
finite differences. Therefore, the following section will
discuss the effects of this numerical increment size on the
convergence, accuracy and computing time and outline some of

the developmental work done in optimizing the step size,

Convergence of the iterative procedure. The iterative

procedure, previously introduced to solve the numerical
equations, must converge in order to obtain a meaningful
solution of the boundary layer; that is, the difference
between successive approximations of the solution at a
particular x-station, m + 1, must continually decrease as
the number of i1terations increases. However, the convergence
of the solution to the exact value, in which the difference
between successive calculations 1s zero, requires a very
large number of 1terations increasing the costs 1n computing
time well beyond the value of the improvements made 1n the
solution. Therefore, it 1S necessary to i1ntroduce a small
degree of 1naccuracy due to incomplete convergence as a
compromise for reasonable computing time. Thus the optimi-
zation of a numerical scheme 1nvolves reducing the number of
iterations (increasing the rate of convergence) required to
efficiently obtain a given level of accuracy.

In any 1terative technique, the accuracy of the

initial guess made at the converged solution determines the
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number of iterations required to reach that solution. 1In
the present method the initial guess, used in linearizing
the equations; is the calculated velocity profile at the
preceding x-station. Therefore, the strength of the veloc-
ity gradient in the x-direction significantly influences the

rate of convergence and determines the size of the finite

increment in the x-coordinate, as shown in the next section.

The effect of truncation error on accuracy. In addi-

tion, to the errors brought about by incomplete convergence,
the truncation error, or the difference between the solution
of the finite difference equations and that of the differ-
ential equations, is also a problem associated with a
numerical solution. Since the derivatives are approximated
by incomplete series expansions of differences made over
finite distances, the truncation error is a function of the
grid spacing, and ffects not only the rate of convergence
but also the accuracy of the solution, becoming most critical
in regions where the gradients of velocity are the largest.
With this in mind, the initial investigation of the turbulent
sqlution indicates that the maximum horizontal gradient
occurs 1in regions where changes in pressure are the most
severe, that 1s, near the separation regions upstream and
downstream of the obstruction, and that the maximum velocity
gradients in_Ehe vertical direction occur near the wall.
OpFimization of the numerical scheme in approximating

horizontal gradients in regions of large pressure variation
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has been achieved by allowing the horizontal increment
spacing, Ax, to vary as a function of the number of itera-
tions required for convergence at a partibular x-station.

As the iterations increase, Ax is decreased so that the
number of iterations is kept below an upper limit. However,
for large magnitudes of the adverse pressure gradients,
which occur near the separation regions, the iterative pro-
cedure will not converge, so that control on Ax will
continue to decrease the step size, effectively determining
a separation point of the boundary layer.

The truncation errors associated with the approxima-
tion of the vertical velocity gradients are also controlled
by a variable grid spacing in the vertical coordinate,
introduced previously by the stretching function, ¢ (2z).
éince the velocity gradients are largest at the wall, the
most important factor in determining the magnitude of the
truncation errors 1s the physical grid size at the wall,

denoted by (/\z)z In the present numerical scheme this

-
value 1s constant throughout the calculation field and 1is
determined as a fraction of the boundary layer thickness of
the velocity profile used as an initial condition on the
equations.

The following section presents a portion of the work
carried out to optimize the numerical technique through an
efficient choice of step sizes. Toward this end numerical
solutions are compared with experimental data for turbulent

flow over a flat plate.
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Comparison of Numerical Solutions with Known Turbulent Flows

Comparison of the turbulent boundary layer solution
with the measured mean velocity profiles of Wieghardt (25)
for flow over a smooth flat plate without imposed pressure
gradients is given in Figure 9, showing several calculated
velocity distributions at one x-location for different
values of the vertical increment size Af. All calculations
were started at an initial station, X, well upstream; using
a profile interpolated from the data at this point, and wére
extended downstream using a constant Ax step size of one
centimeter, utilizing the Van Driest-Clauser eddy viscosity
model, previously discussed.

From earlier discussions, the critical factor in
limiting the truncation errors associated with the vertical
velocity gradient was determined to be the physical step
size at the wall, (Az)zzo, wh;ch in all calculations is set
by the stretching function as 10 per cent of Ag. The
importance of this factor in determining the accuracy of the
solution is dramatically illustrated in Figure 9 by the
obviously erroneous velocity profile obtained in the calcu-
lation employing (Az)z=0 of 0.2 millimeters, which represents
approximately 2.0 per cent of the initial boundary layer
thickness. The other two profiles in this figure, calcu-

lated with smaller values of (Az)z= of 0.5 per cent and 1.0

0
per cent of the initial boundary layer thickness, respec-

tively, are well behaved with the smallest value giving a

slightly better approximation of the data. Figure 10
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illustrates the same influence of (Az)z=0 on the calcula-
tions of the displacement thickness over the plate.

Based on the above discussion, it was decided to
limit the maximum value of (Az)z=0 to 1.0 per cent of the
initial boundary layer thickness, implying an upper limit on
the numerical step size, Az, of 10 times this value.

Optimizing the rate of convergence, as previously
discussed, by controlling the number of iterations through
variation of Ax, basically determines the size of this
increment. However, Ax was not allowed to grow to a magni-
tude of larger than 10 times AZ in order to control the

truncation error introduced by the approximation of the

horizontal gradients.
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CHAPTER 1V

DISCUSSION OF RESULTS FOR TliL FLOW FIELD

NEAR ELLIPTICAL OBSTRUCTIONS

Numerical solutions of the turbulent boundary layer
equations have been carried out for a number of different
cases involving atmospheric flow over elliptical cylinders
of various aspect ratios and surface roughnesses. The
results of these calculations are diviaed into two types:
the first, presented in this chapter, involves the analysis
of the flow field in a region above the obstruction on the
order of one ellipse height in which the pressure gradient
and outer boundary condition are specified along the non-
separating streamline; and the second, to be presented in
Chapter V, in which the analysis is extended to include the
flow field in a larger region of influence above the
elliptical cylinder, incorporates the decaying pressure
distribution and outer boundary conditions dictated by the
logarithmic velocity.

Considering the flow field close to the body, the
following solutions are obtained from a region of calcula-
tion shown in Figure 11. The calculation procedure,
described in Chapter III, is initiated with the logarithmic
velocity profile, characteristic of the approaching wind, at
a position upstream of the body of 20 times the height of

the ellipse. This location is chosen because it represents
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a distance outside of which the pressure distprbance created
by the obstruction is less than one per cent of the free
stream pressure. Proceeding downstream, the velocity pro-
files are calculated as shown, using the potential velocity,
Ue’ as an outer boundary condition, passing through the
region of adverse pressure where the velocities decrease and
the boundary layer grows to the favorable pressure on top

of the ellipse where the flow is accelefated.

The results of this calculation ot the boundary layer
over the elliptical obstruction can be conveniently dis-
cussed in terms of three relevant parameters which evolve
from the dimensionless governing equations. Inspection of
the boundary layer Equations 25 and 26 and the assumptions
concerning the pressure field and boundary conditions which
apply, identifies these parameters as: first, the aspect
ratio, k, of the elliptical cylinder, defined as the ratio
of the length major axis which is parallel to the ground, to
the height of the ellipse which has been fixed in all cases
considered to a value of one meter; second, the surface
roughness characterized by a vertical length scale, z i and
tﬁird, the Reynolds number, expressed in terms of the height
of the elliptical cylinder, b, and a characteristic velocity,

U defined at this same height by the logarithmic velocity

0!

law.

The Effect of Elliptical Aspect Ratio on the Boundary Layer

The effects of a parametric variation of the aspect
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ratio on the velocity profiles at the top of the cllipse are
shown in Figures 12 and 13 for two different surface rough-
nesses. The apparent unusual behavior of the curves at the
coordinate position (1, 1) can be explained both by the
nature of the boundary condition chosen and by the smoothing
effect of the numerical integration. In the former case
u/Ue becomes unity at an elevation slightly greater than
z/b = 1 due to the displacement of the potential solution
streamlines along which Ue is evaluated. The forcing of the
solution by the boundary conditions makes the solution in
this region less reliable than the remaining portion of the
velocity profile. 1In both cases, the effect of increasing
the aspect ratio is a decrease in the mean wind velocity at
the top of the ellipse. It is also of interest to compare
the changes produced by the different ellipses in the
initial logarithmic velocity profile existing far upstream.
For the low aspect ratios, the velocity profiles show wind
speeds at the top which are greater than the approaching
wind, but the larger aspect ratio produces velocities which
are very close to the initial logarithmic distribution,
characteristic of the undisturbed flow, deviating signifi-
cantly only in the outer portion of the profile where the
boundary layer growth causes a decrease in velocity from the
initial values.

The effect of the elliptical aspect ratio on the veloc-
ity profiles can be explained in terms of the pressure field

assumed to exist over the cylinders as shown in Figure 14.
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Figure 13. Effect of elliptical aspect ratio on velocity
profile at the top of the ellipse for zo/b = 0.020.
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Comparing the adverse pressure gradient given along the

nonseparating streamlines for the large and small aspect
ratio, it is apparent that the pressure distributions are
very similar with the 2/1 ellipse having only a slightly
larger gradient. On the other hand, the favorable pressure
gradient 1s obviously quite different for the two cases.
For the 10/1 ellipse the gradient 1s large only for a short
distance near the leading edge then rapidly decreases to a
very small value over a significant portion near the top of

the ellipse. For the 2/1 ellipse the favorable gradient 1is

much larger approaching zero only in a very small region at
the top of the cylinder. The additional acceleration given
to the flow by this larger pressure force is the primary
cause of the higher wind speeds shown in Figures 12 and 13

at top of the smaller aspect ratio ellipses. In addition,

the fact that the velocity tends to return to the logarithmic

distribution at the top cf the longer ellipse can also be
explained by considering the region of a favoraﬁle pressure
gradient. Recalling that the logarithmic velocity is
characteristic of zero pressure gradient flow, it 1s not
surprising that the boundary layer at the top of the 10/1
ellipse approaches the logarithmic form of the upstream,

undisturbed wind profile.

The Effect of Surface Roughness on the Boundary Layer

The effects of variation in surface roughness on the

velocity of the wind at the top of the 2/1 and 10/1 ellipses

are shown 1n ligures 15 and 16, respectively, for several
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Figure 15, Effect of surface roughness on the velocity
profiles at the top of the 2/1 ellipse.
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different roughness values, Zo/b' ranging from 0.005 to
0.020. The decrease in the velocity at the top of the two
ellipses caused by increasing the roughness, can readily be
explained by examining the influence of the individual
roughness elements on the flow i1n the vicinity of the ground.
As discussed previously, there are two effects produced by
the protrusions of the surface into the flow: the first is
the increased drag of the fluid on the surface caused by the

separation of the boundary layer on a small scale; and the

second is the larger shear brought about by the more turbu-
lent eddying motion produced in the region close to the
surface. Both of these effects are enhanced by larger
roughness creating a greater dissipation of the momentum
through the boundary layer.

Comparing the effects of an increase in roughness on
the two different ellipses shown in Figures 15 and 16, it
appears that the roughness change does not influence the
flow fields for the two different aspect ratios to the same
degyree. This is more apparent in Figure 17 where the
difference, Au, in velocity calculated with roughness zo/b =
0.005 and that for zo/b = .020 is plotted as a function of
height above the surface. From this figure it is obvious
that increased roughness has more influence on the boundary
layer near the surface of the 2/1 ellipse than the 10/1; but
that this influence decays rapidly toward the outside of the
surface layer causing roughness effects to become more
influential 1n the outer region for the 10/1 ellipse.
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These results can be explained by again comparing the
pressure field over the top of the 2/1 and 10/1 elliptical
cylinders. As previously discussed the pressure gradients
which exist along the top of the larger aspect ratio
ellipse are extremely small, so that the force created by
this gradient 1s negligible, and the momentum of the flow in
regions near'the top of the 10/1 ellipse is effectively
determined by the viscous forces only. Therefore, the

viscous effects produced by the surface roughness extend

much further i1nto the boundary layer for the 10/1 ellipse,
explaining the larger values of Au calculated in the outer
region of the boundary layer as obsérved in Figure 17,

On the other hand, the much larger favorable pressure
gradients which exist over the top of the 2/1 ellipse have
an influence on the flow which can be used to explain the
effects of a change in roughness observed near the surface.
Because of the larger accelerétion produced by these favor-
able pressure forces, the velocity gradient near the wall is
greater for the 2/1 ellipse than for the 10/1 ellipse.
Therefore, since the viscous shear 1i1s directly related to
this gradient, the effects of roughness will also be larger

in this region, leading to the results shown in Figure 17.

The Reynolds' Number as a Parameter

Nondimensionalizing the governing equations by a
characteristic length and velocity produces the Reynolds'
number as a parameter of the boundary layer. However, Ey

defining the Reynolds' number in terms of the logarithmic

1



wind profile which exists far upstream, it is no longer an

independent parameter of the equations but becomes a func-

+

tion of the surface'roughness, as shoWn in the following

equation:

U b bu*o |b+Z

0
Re = —— = = in |
\Y] \) < N Zo H

O

(34)

On the other hand, this definition of the Reynolds' number

introduces a new variable i1nto the problem as the initial
friction velocity of the undisturbed flow, Uk s which has
been chosen as the independent parameter, entering the
equations through the Reynolds' number.

The influence of the initial friction velocity on the
overall flow field is illustrated in Figure 18 by the dis-
tribution of the displacement thickness over the 2/1 aspect
ratio ellipse. Two curves are shown, one for a value of
Uy, = 0.40 meters/second and the other for u, = 1.00
meters/second which correspond to Reynolds' numbers of
3.8 x lO5 and 9.5 «x 105, respectively. For the vqlues of
friction velocity used in these two calculations, the
maximum change occurring in the displacement thickness for
an increase 1n Uy by a factor of 2.5 is only 0.87 per cent.
Thus, it is suggested that the Reynolds' number, on the order
of the magnitudes given above, has little effect on the
boundary layer. This conclusion can also be verified by
examining the nondimensional boundary layer equation

(Equation 24). Expressing the eddy viscosity derived from
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Figure 18. Effect of Reynolds' number on the velocity
profile at the top of the ellipse for zo/b = .005.
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the mixing length concept as given in Equation 15 1n non-

dimensional terms,

. . Upb 5, d(u/u)

£ =573 [« z/b] "3 (z/b)
—%

E* = Re K22*2 ou

and substituting into Eguation 24 results in the following

expression for the boundary layer equation:

crooat L ooeoat v Ve o 11 2 %2 30 aut
ax¥® Jz¥ e dx¥  3zF| R 3z laz*I
i

(35)

It can be seen from this equation that the effect of the

Reynolds' number will be negligible through a majority of
the boundary layer 1if the Reynolds' number is large as is
characteristic of atmospheric flows.

Although the overall effect of the Reynolds' number
is small, 1t 1s also evident from Equation 35 that very near
the wall where the turbulent shear 1s decreased, the
importance of the Reynolds' number is increased. This is
clearly demonstrated 1n Figure 19 by comparing the changes
in the velocity profiles produced by the Reynolds' numbers
considered above. A velocity difference, u - u', is plotted
as a function of height above the surface, where u is the
wind velocity calculated with an i1nitial fraiction velocity

of 1.00 meters/second, and u' 1s the wind velocity for a
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friction velocity of 0.40 meters/second. The corresponding
mean wind spced, U, for these two cases 1s 12 miles/hour

and 30 miles/hour, respectively. Figure 19 confirms that

the predominant influence of the change in Reynolds' humber
brought about by increasing the initial friction velocity,

is confined to a region near the wall, with the effect being
most significant at the top of the ellipse where the velocity
gradients and shear stresses are large. The other profile

is calculated at a position upstream near the forward

separation region where the adverse pressure field causes

the velocity gradients and stresses to be relatively smaller.

The Effect of Roughness and Ellipse Geometry on Separation

The severe adverse pressure gradients which exist up-
stream from the body cause separation of the boundary layer
near the stagnation region. Since the numerical solution,

as discussed 1n Chapter III, gives a reasonably accurate

predictiot: of the point at which this separation occurs, a
characteristic length of the forward separation bubble can
be determined. This calculation has been carried out for a
number of elllpﬁxcal aspect ratios and surface roughnesses
and is given 1in Figure 20. Examining the effect of rough-
ness on the length, A, of the separation region, it .is
apparent that a decrease 1in z, produces smaller separation
regions tending to approach some asymptotic value for a
smooth surface. This 1s expected 51nce'roughness reduces
the veloncity near the surface de:réasing the momenfum
available to overcome the adverse pressure forces.
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_ The offnct Uf the éspert rati1o on the lenqth of the

separatinn LS smelar to that of Lhe rnu;hncss, w1Lh the.f{b

&

longer elllpscs producan smaller separatxon bubb;es Thxs‘d

fact can be expla;ned by examlnLng cthe presshre distribution -

,over the cylinders as shown 1n Figure 14, paqe 65. ‘As%

poxnted out m the dxsrussxen of that fxgure.dfhe adverse .

pressure gradjent upstream trom the body 1s more severe fori'

the smaller aspcct ratxo elllpse, leadlng to the conclusxon
- that separatlon occurs further upstream for the shorter

aelllpses.

Itvxs ‘not only lmportant to derermxne the effe
the ellxpttcal qeumetry on the mean veloc1ty fireld, but 1t
rls also desxrdblc to examine the i1nfluence of the obstruc-
tion on the furbulent chanacteclstlhs of the tlaw- -:E

‘ This has been done 1n Figure 21 showtng the develop-
ment of the eddy v1scosxty proflles over the 10/1 ellxpse.
Starting far upstream the eddy viscosity proflle. g;ven by
curve a, 1s ﬂdlculatediby Equation 15 from the initial

’logarlthmlc veloc1ty dlstrlbutlon‘ Proceedlng downstream,

under the Lnfluence sf,a m11d adverse pressure gradlent.,
the next profile, exven in Figure 21 by curve B, 1s.at*a’
p051t10n upstream of the forward stagnation poxnt of about
tW1ce the elllpse helqht. It can’be seen in comparlson with

‘curve A, that the viscosity has decreased sllghtly‘ln the

lower region of the boundary layer becoming larger near the
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outer: edge. Curve C is calculated over the stagnation point
where (=2 1mp:sad mean pregsure gradient first becomes favor-
able. This profile continues the-trend discussed above with
the viscosity reaching a maximum near the outer edge. The
profile given at poinf D, is calculated at a position down-
stream of the maximum favorable pressure gradient and
exhibits a drastic change from the pattern established by
the first three curves, with the eddy values increasing to
local maximum values near the wall and decreasing rapidly to
minimum values in the oute; boundary layer. And, finally,
the last profile, calculate. at the top of the ellipse
(point E), well downstream from D, shows the effect of the
very small pre-sure gradient existing over a large portion
of the cylinder. The response of the eddy viscosity to the
influence of this negligible pressure field is similar to

that of the velocity, tending to return to the form of the

undisturbed flow upstream. This fact is not surprising,
however, because the eddy viscosity, calculated by the
Prandtl mixing length model, is directly related to the
vertical gradient of the velocity.

Therefore, the results given in Figure 21 can be
explained by examining the effect of the pressure forces on
the velocity. Since adverse pressure decelerates the flow
reducinyg the gradient in velocity near the wall while
increas'ng it in the outer flow, the turbulent shear will
show a similar effect as illustrated in comparing curves A,
B and C of Figure 21. On the ottur hand, the favorable
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pressure gradients over the front of the ellipse will have
the opposite effect, as shown by curve D with the large
increase in eddy viscosity occurring near the wall decreas-

ing rapidly in the outer boundary layer.

Calculation of Flow Over a Fence with Comparison to Data

In addition to the results previously discussed for
atmospheric flow over the elliptical cylinders, several
calculations have been carried out for flow over a fence, or
two-dimensional vertical flat plate, which represents the
limiting case of the elliptical cylinder with zero aspect
ratio. This particular flow situation has a number of
practical applications as a wind-sheltering device and has,
therefore, been the subject of a number'of experimental
studies (4), (lI) and (12).

Applying the concepts developed within this study to

flow over the fence, approximations of some representative
data (12) can be made. Results of this calculation are
given in Figure 22 and are compared with measured velocities
upstream and on top of the fence. All calculations are
carried out over a smooth surface using the Van Driest-
Clauser eddy viscosity model with pressﬁre distribution and
outer boundary conditions given by the potential flow values
along the first nonseparating streamline. The particular
potential solution used in these calculations is obtained
from Reference (23) assuming a symmetric flow over the

fence.
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Examining the two profiles upstream of the fence it
appears that the numerical solution overpredicts the
velocity near the wall with smaller predicted values in the
outer edge of the flow. This is probably due to the large
pressure gradient physically existing in the vertical
direction which decelerates the flow.near the surface to a
much greater extent than the assumed mean pressure gradient
along the nonseparating streamline. The calculated profile
at the top of the fence, while exhibiting a similar form to
the measured profile, predicts much larger velocities in the
boundary layer. This effect is due to the outer boundary
conditions obtained from potential theory which do not take
into account the very large separation regions both upstream
and downstream of the plate. Because of the large decelera-
tions produced by these regions, a potential solution which

includes these effects would be a better approximation of

the actual flow conditions, and more accurately predict the
magnitude of the velocity.

Both of the above effects produced by the large
separation regions which exist in a major part of the flow
field surrounding the fence, can be taken into account to
some extent by the methods introduced in Chapter II. Since
the pressure gradient imposed on the boundary layer by
reversed flow regions is much larger for the case of the
fence than for the elliptical cylinder, the former flow
situation provides a severe test for the methods proposed in

this investigation. However, with improved approximations
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of the pressurce field and boundary con .ions, it is
believed that the boundary layer approach can make reason-

able predictions of the flow field over the fence.
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CHAPTER V

DISCUSSION OF RESULTS FOR AN IMPROVED BOUNDARY
LAYER ANALYSIS OF FLOW OVER

ELLIPTICAL OBSTRUCTIONS

Analysis of Enlarged Flow Fields

The consideration of flow fields in a larger region
above the elliptical obstruction than that discussed in the
preceding chapter requires approximations of the outer
boundary condition on the mean wind and the pressure dis-
tribution over the obstacle which are more characteristic
of atmospheric flow in this enlarged region than conditions
prescribed along the nonseparating streamline. As discussed
in Chapter II, the outer boundary condition which is a
realistic approximation of the flow far from the surface is
given by an asymptotic matching of the velocity within the
boundary layer to the logarithmic velocity associated with
the undisturbed flow. In conjunction with this boundary
condition it was also pointed out that the éressure gradients
associated with the obstruction must decay to zero from the
value given along the nonseparating streamline. Therefore,
the initial approximation of the pressure field existing
within the region of influence of the elliptical cylinder,
is givén by thé following second order quadratic decay

function:
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q(z) =

UiN

, d
dpéz z) _ [Eéz)] © q(2)
ns

where [gBéﬁl] is the pressure gradient determined along
the nonseparazing streamline over the obstruction.

Preliminary calculations of the flow field in an
enlarged region over the elliptical cylinder, using the
above pressure distribution aqd logarithmic outer boundary
condition, have been carried out for flow over the 2/1 and
4/1 aspect ratio ellipses with different roughnesses. The
results of these calculations for the 2/1 ellipse are given
iﬁ Figures 23 and 24 showing the development of the boundary
layer from a position upstream of 10 times the ellipse
height to the top of the cylinder. This initial location is
chosen in order to reduce the computing time required for
these preliminary calculations. The logarithmic boundary
condition is applied at a constant height above the surface
of five times the ellipse height, with the solutions non-
dimensionalized by the logarithmic velocity defined for
convenience at a position of three tiﬁes the ellipse height.
One observes from the curves that the flow is initially

decelerated from the starting profile at x/b = -10.0 through

the range of approximately x/b = -3.0 and then is accelerated

to the top of the ellipse, x/b = 00. Similar results are
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Figure 23. Development of the boundary layer over a 2/1
ellipse with variable pressure gradient in the vertical

direction and logarithmic outer boundary condition for
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shown in Figures 25 and 26 for the 4/1 ellipse.

Comparing these results with the velocity profiles
pfesented in the previous chapter, the most significant
effect of the vertical variation of the pressure gradient is
the pronounced maximum in the wind velocity produced locally
near the surface for the calculations made ovér the top of
the ellipse. This result is due to a combination of the
large accelerations created by the favorable pressure
gradients which exist in this region of the flow field, and
the influence of the decaying pressure function imposed on
these gradients which decreases the acceleration, allowing
the flow to return to the logarithmic velocity at large
heights above the surface.

The acceleration of the boundary layer occurs from a
position x/b = -3.0 to the top of the ellipse where the
maximum wind velocities are attained at an elevation of
about 0.3 times the ellipse heirght. In magnitude the wind
1s accelerated to about twice its initial value. This com-
pares to calculations discussed in the previous chapter in
which the maximum velocity at the top of the‘2/1 ellipse was
only 35 per cent greater than the 1nitial wind speed.

However, returning to the solutions given in Figures

23 through 26, consider the flow far upstream. Since the
pressure disturbances created by the obstruction are small,
the effect of the vertical decay of the pressure gradient is
negligible, with the form of the velocity profiles decreasing
only slightly from the initial logarithmic distribution.
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Procceding downstrcam, the adverse pressure increases,
rcaching a maximum at approximately x/b = -3.0, where the
deceleration 6f the flow near the surface causes the
velocity to significantly deviate from the logarithmic
distribution extending the influence of the body to very
large heights.

The results given in Figures 23 and 24; pages 87 and
88, and Figurés 25 and 26 are, in general, consistent with
the wind profiles given in qualitative discussions of flow
over surface obstructions (2) and (4) and with some experi-
mental measurements of boundary layers over fences (11) and
(12), in that the velocity near the obstruction exceeds that
of the undisturbed flow. Moreover, this result is predict-
able from the standpoint of the conservation of mass, which
requires that the acceleration of the flow at the top of
the body be a maximum close to the surface where the stream-
lines are the most severely compressed.

Therefore, based on the above considerations and
intuitive reasoning about the distribution of the pressure
disturbances above the body, it is believed that the method
used in obtaining the results given i1n this section 1s a
justifiable approach 1in approximatiné the flow fields over
surface obstructions. However, additional experimental work
is needed to further verify this concept and to more
accurately determine the variation of the pressure field in

the vertical direction.
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Boundary Layer Effects Produced by Separation Regions

The improvements made in the boundary layer analysis
by simulating the effects of the separation regions with
stationary, inviscid vortices, discussed in Chapter II, have
been preliminarily investigated. The calculations, given in
Figures 27 and 28, have been carried out for flow over the
2/1 ellipse for several surface roughnesses with these
results compared to the solutions given in the preceding
chapter for flow over the same body without attached
vortices.

The effects of the simulated separation region on the
development of the boundary over the ellipse is illustrated
iniFigure 24, pagye 88, by comparing the velocity profiles
calculated at different x-stations along the surface. The
influence of the vortices on the velocity is to increase the
thickness of the shear layer by decelerating the flow in the
baoundary layer both upstream and downstream of the forward
separation rcygion. Il'or the calculation carried out over the
vortex, this same effect occurs in the upper portion of the
profile, but near the vortex, the additional momentum
imparted to the flow by the slip velocity, ug, along the
dividing streamline increases the velocities 1n the lower
boundary layer. 1t is useful in examining the effect of the
separatldn regiouns on the flow to consider the potential ’
velocity field over the elliptical cylinder given 1n Figure
7, page 37. Comparing the distribution along the non-

separating strecamlines ‘ggﬁ = 0.60) for the cases given with
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Figure 28. Effect of vortices on velocity profile at top of
2/1 ellipse with different roughnesses.
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and without the effects of the potential vortices, 1t can be
obscrved that both upstrcam of the forward scparation region
and at the top of the ellipse, the vortex decreases the

potential velocity. This effect can be interpreted through

-the Bernoulli equation as an increase in the pressure gra-
dient in these two regions of the flow. Since the pressure
fields at these two positions are adverse, this fact leads
to the conclusion that the velocity in the boundary layer
will be less for calculations which include the influence of
the separation regions. However, the velocity is affected
to a greater extent upstream where the difference in the two
potential solutions is greater than at the top of the
ellipsé.

This effect is further illustrated in Figure 28 for
calculations made at the top of the obstruction, for differ-
ent surface roughnesses, where the maximum decrease 1in
velocity brought about by*®including the vortices in the
potential solﬁtion, is only about two per cent. An addi-
tional observation from this figure is that the separation
regions appear to have no effect on the difference in
velocity brought about by changes in roughness, that is, the
increase in velocity produced by the change roughness from
2, = .010 to .005 meters is very nearly the same as the
solution obtained with the addition of the vortices.

From the above considerations it can be concluded
that this method of simulating the additional effects of the

separation regions with the inviscid vortices attacks the
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most difficult area of the flow field to predict by boundary
layer analysis and suggests that the effects of these regions
‘on the overall flow field are small. In addition, steps

have been taken to obtain a more realistic physical inter-
pretation of the solutions over the separation bubble by
including the slip velocity as-a lower boundary condition on
the equations.

It is believed that this initial attempt at incorpo-
rating the effect of the separated flow into the boundary
layer approach will improve the approximation of the flow
field near the separation regions, but preliminary investi-
gation of this method indicates that further calculations
and experimental work are needed to improve the assumptions

made.
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CHAPTER VI

DISCUSSION OF RESULTS RELATIVE TO

AERONAUTICAL APPLICATION

Winds and turbulence are significant factors influ-
encing the safety, quality, and efficieﬁcy of air transpor-
tation. Loads due to extreme turbulence or unexpected gusts
of wind can exceed the static strength of the aircraft or
upset the handling qualities to the point where control is
lost and accidents occur. The effects of moderate turbulence
although generally not as catastrbphic, can degrade the
precision of flight and tax the fatigue strength of the
structure.

Donely (31) reports that approximately 80 per cent of
rough air experience occurs at altitudes below 25,000 ft.
and is consequently prevalent to short haul or feeder line
aircraft and to long haul aircraft during climb and descent.
In the terminal areas where precision flight is most critical
the air motion is frequently more severe due to wind dis-
turbances ffom buildings and topological surface features.

The wind gradient or shear can either add or absorb
energy from an ascending or descending aircraft. Since the
aircraft is essentially a constant speed machine, a gradient
wind can thus increase or decreasé the rate of descent énd
the angle of descent as well as the margin for the stall

safety. These problems tend to increase as the landing
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speed decreases, and for V/STOL vehicles, the angular varia-
tion with altitude can be a significant factor in compli-
cating the pilot's task of controlling the aircraft.

Automatic landing systems are also susceptable to the
effects of turbulence. McManus (32) reports on early
experience with the Trident automatic landing system: "When
the Trident was first landed automatically in moderate
turbulence, several instances of poor performance occurred.
These were caused by significant singlexhorizontal gusts."”
"These gusts were not predicted by the general turbulence
models as they were special to the site.™ 1In one case, a
moderate crosswind was blowing over a factory into the under-
shoot area. Close inspection showed a long hanger with a
double apex roof at approximately 45 degrees to the wind,
directly in line with the undershoot area. This generates a
stable wind patﬁern which a single stationary measuring
station would not record as high turbulence, but an aircraft
passing through the pattern would be subject to large air-
speed variations.

The problems of an aircraft flying through a head
wind that varies with elevation has been investigated in a
paper by Etkin (33). The equations of motion were set up
and solved for a flight at constant air speed. The effect
of this wind gradient on the flight path during descent and
climb is shown. It is seen that the deviation from the case
with no wind gradient is quite considerable.

In the case of descending from a given height into a
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positive wind gradient (increasing wind with height), an
airplane overshoots the initial tangent by a distance s, as
shown in Figufe 29. For a linear wind variation, this dis-

tance is given as:

0]

t
N
j
Nz

<

t® sin ¢

where

g: head wind gradient

Airplane Air Speed

time

e o 35
]

path angle

The problem of the climbing aircraft differs from the
glide in that the angle ¢ is negative and that there is an
additional force, the thrust. The path is a parabolic as
before, the convexity in the same sense, so that the hori-
zontal distance to reach a given height is concentrated as
compared with the case of zero wind gradient; see Figure 29.
The effect of a negative wind gradient (deéreasing wind with
height) on glide and climb is shown in Figure 29.

Another.éffect arises, when the wind gradient is not
coming directly from ahead, but is blowing at a certain
angle B8 to the flight direction. It is shown in Figure 30
that a cross wind induces a lift addition on one side and a
lift subtraction on the other side of the wing, thus pro-
ducing a roll-moment. As w(z) or w sin B is a function of
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102




elevation, the roll-moment will also vary with height
according to w(z). For strong gradients of w(z), corre-
spondiﬁgly strong gradients in the roll-moment must be
expected.

An approximate quantitative estimate of the influence
~f gusts occurring due to the presence of buildings is
v.ossible from the results of this study shown in Figures 23
through 26, pages 87, 88, 90, and 91. These figures show
relatively large wind acceleration or gusts near the top of
semi—ellipticél surface protrusions. Taking the 1lift as a
typical example, the following analysis for a 2:1 ellipse
with the velocity profile shown in Figure 23 provides a
quantitative feel for these effects.

Lift is given by the expression:

The ratio of the lift in the disturbance of the building,

L to that in the natural wind, L all other parameters

Bl N’

being constant, is:

B

N

&
rm—————
<
w
-+
<

A plot of the ratio LB/LN versus elevation at the x/b = 0
station for the 2:1 ellipse with zo/b = 0.005 assuming
VA/U(z=3) = 1.0 is shown in Figure 31. The plot indicates

that an aircraft flying into the wind over a long building

103



‘puUIM TeIN3leu
uT 3ITT 03 9sdITI® I8A0 3JTT JO OT3BI 9Y3 JO UOTINQTIISTP T[eOTIIdA "T¢€ 2anb1a

q/z
0°¢ 0°¢ 0°1

J ¥ 1 LB L 1 v

0°0 = a/x

osdT1T1d 1:2




or surface obstruction of semi-elliptical configuration
would experience an increase in lift exceeding 20 per cent of
thé value for wind over uniform terrain if passing below a
distance egual to the obstruction height z/b = 1.0, (i.e.,
40 feet above the ground for a 20 foot obstruction).

Figure 32 shows the variation in lift ratio LB/LN
with longitudinal position from the top of the ellipse to a
dimensionless distance x/b = -10 upstream of the approaching
wind where the wind is logarithmic. Parametric variation
with z/b is given in the curve.

An aircraft passing over the obstruction at a fixed
height of z/b = 1.0 would experience an initial increase in
lift of 20 per cent which would diminish and change to a 10
per cent decrease at x/b = -3.0. Thus, a simple 15 foot
high quansit hut located on the order of 600 feet from the
end of a landing strip can generate a 30 per cent variation
in lift in a distance less than 150 feet. The pilot's
correction time at 50 mph landing speed is on the order of
two seconds illustrating the hazards of unexpected wind pro-
files due to surface projection.

It is apparent from the previous discussion that a
model for predicting wind velocity profiles about surface
obstructions is important to the design of airplane control
systems and to the design of airports themselves. The wind
model presented in this report is a step in that direction
since it provides transportation designers with insight to:

1. Determining the safest distance for structures
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from landing strips, at least, from the windward side. This
is of particular significance to V/STOL ports in urban areas.
2. Analyzing existing airports to warn of possible
unexpected wind patterns and to define optimum locations of
measuring stations to detect these wind patterns.
3. Improving mathematical gust models employed in
automatic landing systems. Present gust model generally

assumed a power law variation of the mean wind, for example

Skelton (34) uses:

U(z) = U(z)) (/2" (%)

A mathematical description for the flow patterns induced by
surface obstruction is required to make these gust models
more reliable.

The use of the present boundary layer analysis of
wind profiles is of course limited to a two-dimensional
elliptical geometry and subject to the assumptions regarding
eddy viscosity and pressure gradient decay. Moreover, the
numerical nature of the solutions make them difficult to
incorporate into mathematical gust mode}s and into computa-
tion of airplane characteristics.

| In view of the promising applications the flow
analysis over obstructions has, however, it is believed that
additional effort to expand and improve the model is
definitely desirable. The model should be:

1. Extended to other geometries,

2. Investigated using other eddy viscosity
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correlations, for example, conservation of turbulence
kinetic energy,
3. Employed with other hypothesis regarding the
pressure gradient surrounding the surface obstruction, and
4, Compared to wind profile data from a simple

experiment over an elliptical configuration.
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CHAPTER VII
CONCLUSIONS AND SUMMARY

The boundary layer approach presented in this investi-
gation provides a reasonable first order approximation of
the atmospheric flow field which exists around buildings and
other surface obstructions. This method has been applied to
flow over elliptical cylinders, and, despite the lack of
experimental data in this area, certain conclusions can be
drawn about the relationship of the parameters involved in
this problem.

l. An increase in the elliptical aspect ratio
decreases the wind speed within the boundary
layer at the top of the ellipse and returns it to
the logarithmic distribution characteristic of
undisturbed flow.

2. Increases in surface roughness affect the flow by
decreasing the velocity in the boundary layer,
with the most pronounced effect occurring near
the surface of the smaller aspect ratio ellipse.

3. The initial friction velocity which enters the
boundary layer equations through the Reynolds'
number has a negligible effect on the overall
flow for the range of Reynolds' numbers considered

in this study.
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4. A decrease in the elliptical aspect ratio and an
increase in the surface roughness cause larger
separation regions.

5. The decay of the streamwise pressure gradient in
the vertical direction produces localized maxi-
mums in wind speed at the top of a surface
obstruction, which are expected in physically
real flow situations.

6. The preliminary investigation of the simulation
of separation regions with inviscid vortices
indicates that this method appears to have only a
small effect on the overall flow but does improve
the approximation of the flow field near the
stagnation regions,

In summary, the method developed in this study
utilizes the simplifying assumptions of boundary layer
theory in an effort to analyze the complex flow field which
exists in atmospheric motions over surface obstructions. It
has been shown that reasonable approximations of the physi-
cal conditions which exist in the atmospheric flow near the
ground can be made without sacrificing the simplicity and
savings in time and money realized with a boundary layer
solution as opposed to a solution of the complete equations
of motion. Finally, it is believed that, with additional
experimental and analytical work to verify some of the
proposed assumptions, flow fields over surface obstructions
can be predicted with sufficient accuracy to make the
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boundary layer approach a valuable tool in the analysis of

atmospheric shear flows.
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APPENDIX A

UNIFORM POTENTIAL FLOW PAST AN

ELLIPTICAL CYLINDER

The potential flow field around a two-dimensional
elliptical cylinder can be obtained from the theory of
complex variables. Consider a uniform, irrotational flow of
an incompressible, inviscid fluid in the complex Z plane
parallel to the X-axis with a velocity U. Defining the

complex potential, w, as

wi(zZ) = ¢(X,Y) + iv(X,Y)

where Z = X + iY, the velocity field can be obtained by
differentiating the potential with respect to a coordinate

direction,

Defining the complex velocity as the negative of this

differential,

<

I

I
32

- _ 9% _ Ay ooy
ST T tax T W

where u and v are the velocities in the X and Y directions,
respectively. For the case of uniform flow parallel to the

X-axis,
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or
w(z) = -UZ

Consider a circular cylinder of radius'R placed in' an
arbitrary flow field of complex potential f(Z). From the
circle theorem of Milne-Thomson (23), the complex potential

of the flow around the cylinder becomes

_.RZ\
wi(z) = £(2) + f(-z—J

where f is the complex conjugate of f. For a circular
cylinder in a uniform flow field, the complex potential is

r%)

w(z) = U(Z + E‘] (36)

To transfer the region of flow ;n the Z plane out-
side the circular cy.inder into a region outside an ellip-
tical cylinder in the z plane, as shown in Figure Al, ‘the
Joukowski transformation (23) should be applied to the above

equation. This transformation has the following form,
c2
z=Z+ﬁ
where
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Figure Al. Geometry for Joukowski transformation of flow
over a circular cylinder to flow over an elliptical
cylinder.
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R = 3{a v b)
Solving for the inverse transformation,
z =2z + /372 c2) (37)

and applying to Equation 36, the flow field over the cir-
cular cylinder of radius R = (a + b)/2 is transformed into
flow over an elliptical cylinder of major axis 2a aligned
parallel to the x-axis and minor axis 2b aligned with the
y-axis, as illustrated in Figure Al.

Using the positive root of Equation 37, the complex

potential in the z plane becomes

It 2 4
wiz) = 20| (z + /zZ 2 g2) + —2a*b)
z + /22 2
- 1 (z + /22 - o2 z - /22 - 2]
wi(z) —--5U(a+b)t 5 + =<5 ‘ (38)

Defining an orthogonal, elliptical coordinate system,
(¢,n), the z plane can be transformed into a more useful
form. This coordinate transformatidn from the (x,y) vari-
ables in the z plane to (£,n) in the elliptic plane is

defined by
Z = x + 1y = ¢ cosh (£ + in)

or
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z = c{cosh £ cos n + sinh £ sin n] (39)

where the lines of constant { are cofocal ellipses with
majbr axis parallel to the x-axis, and lines of constant n
are orthogonal hyperbolas. In Figure Al, page 106, the line
£ = £, defines an ellipse with major axis of length 2-:a and

minor axis of length 2:b. From Equation 39

X = ¢ cosh § cos n (40)
y = ¢ sinh £ sin n (41)
therefore

a = ¢ cosh Eo = Va2 - b2 cosh &, (42)
b = ¢ sinh £, = V4% - b2 sinh g, (43)

From the definition of the hyperbolic functions, Equations

42 and 43 can be copbined as

cl(cosh £, + sinh £,) = ce®o (44)

[+)

+
U
i

[\
t
o
i

c(cosh £ - sinh §,) = ce”bo (45)

Introducing Equations 39, 44, 45 and the hyperbolic identi-
ties into Equation 38, the complex potential for flow over

an elliptical cylinder becomes

. 2 2 . 2
w(z) = %U(a + by |S cosh(E+in) + g cosh (£+in) - ¢
' ce”©
+ S cosh(g+in) - c2cosh2(£+in) - CZ]
cebo )
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exp (E+in-§ ) + e _{-f-in=g )

= Ufa + b)

\ “

wi(z) Ufa + b) cosh{f + in - EO)

wi(z) o + iy = T(a + b) cosh[(§ - EO) + in] (46)

Expanding and equating *he real and imaginary parts, the

stream function will be defined as

I

P U{a + b) sinhf{g - &o) sin n

<
i

= U2 + b)isinh ¢ cosh Eo - cosh § sinh £ ] sin n
' (47)

Using Equations 42 and 43 and expanding cosh £o as an
exponential and hyperbolic sine term, the following relation

is obtained for the stream function:

v = -uby222 €% sin n + U¥a® - b? sinh £ sin n (48)

Nondimensionaliiing this equation by U and b and defining an

ellipse aspect ratio k = a/b, the stream function becomes
vk + 1 _-€ . 2 o o
b x—1° sin n + (k 1)sinh £ sin n (49)

This relationship defines the streamlines for uniform
potential flow over an elliptical cylinder.
The velocity potential function, ¢, is similarly

derived and is given by the following equation:
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k + 1 -¢

cos n + k2 - 1 cosh £ cos n (50)

3¢

Since the velocity in any direction, s, is given by - Yl
the potential velocity can be obtained by differentiating
Equation 50 with respect to the direction of the streamline.
However, it is more convenient to calculate the velocity
along the streamline in terms 6f the orthogonal elliptic
coordinates (£,n).

Consider an incremental distance, ds, along the
streamline as shown in Figure A2 in terms of the Cartesian

coordinates (x,y).

(as)? = (ax)? + (dy)? (51)

Since under the elliptic transformation,

»
i

x(&,n)

y(&,n)

.
i

Egquation 51 becomes

2 Ox ax . |2 3y dy » 2
(ds) = -52- dE + 'ﬁ dn} + (aa dg + M dn}
or
2 2 2
(ds)® = E(QE)° + F dE dn + G(dn) (52)

where E, F and G are scaling factors defined by

( 2 2
= & 3
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z + dz
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X + dx
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y=constant
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ag

£ + dg

+ d
L] n an

Figure A2. The relationship of differential distances in

Cartesian and elliptic coordinates.
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F = 9X 3X . 9y 3y (54)
an an

5E S5E
2 y 2
_ {9x ay
€= [8n] ¥ (3nJ (53)

For an orthogonal system, F = 0; therefore,
@s)? = B(@£)% + c(am?
Along a curve, n = Ny dn = 0.

ds = VE d¢ (n

I
—J
—

Similarly, along £ = Eo' dg =90

ds = /G dn (£ =

gy
-~

For conformal transformations, the scaling at any point must

be the same irn all directions, corsequently,

VE = /G
and
L = 2 2 (56)
=t VE "Mg=g_
%_ - 1 %F? (57)
5 = ’} =
n=n, VE n=n,

From Equations 56 and 57 the velocity components in

the positive £ and n directions as shown in Figure A3 are

given by
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Yy=constant

Figure A3. Potential velocity components in elliptical
coordinates.
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_ 3¢(£!n)

uE (58)
vE 03¢
— 1l 9¢(E,n)
u = = —= (59)
n VE n

From Equations 50 and 53, these equations beccme
u
ﬁé = 1 (\/t t i e & cos n
'V ) 2 2 .2 1
sinh™f cos“n + cosh“f sin™n

+ sz - 1 sinh £ cos ni (60)

)

u _
- 1 [wli t i e~ % sin n
-\/s 2 ‘ 2

inh“g coszn + cosh2£ sin“n!

|

c

+ Vk - 1 cosh £ sin n] {(61)

Equations 49, 59 and 61 determine the potential solution for

flow over an elliptical cylinder.

128




APPENDIX: B

UNIFORM POTENTIAL FLOW PAST AN ELLIPTICAL

CYLINDER WITH FIXED VORTICES

Consider a circular vortex of radius A rotating in a

stationary, inviscid, irrotational, incompressible fluid.

Locating circles concentric with the vortex of radius r' <A

and r" > A, Stokes circulation theorem (23) can be applied

to obtain the velocity of the fluid on these circles,

where w is

Therefore,

1l wA "
2 " r
1 '
7 rw r

the vorticity

the existence

induces a velocity field

magnitude o©f the induced

the radial

distance from

directed perpendicularly

> A

< A

of the fluid inside of the vortex.
of a vortex in an inviscid fluid
in the region around it with the
velocity inversely proportional to
the center of the vortex and

to this radius. The fluid within

the vortex rotates as a rigid body with a velocity propor-

tional to the radial distance. It is important to note that

the vortex cannot induce motion at its center, implying that

a circular vortex in an undisturbed fluid will remain fixed

at its initial position.

Considering a circular vortex centered at the origin
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in the complex Z plane, the velocity field induced to a

stationary fluid is given by

a - Ia,e1(6+n/2)

which expressed in terms of a complex velocity is

A2w2
r

=y - 1V = el(6+7t/2)

1§|e-i0+m/2) %

Integrating this equation results in the complex potential,

w, for flow about a fixed vortex.

wi(z) = £ iwa? an z

N} =~

Centering the vortex at an arbitrary point z, and defining a
circulation strength « = %Azw, being positive in the counter-

clockwise direction, the complex potential becomes

w(Z) = ik n(zZ2 - Zo) (62)

The rotational core of the vortex can be reduced to a
singularity at the center by considering the concept of a
vortex filament. Taking the limit as the radius of the
vortex decreases to zero and the vorticity approaches
infinity, such that the product A ¢ w remains constant, the
circular vortex degenerates to a point with the external
flow field still given by Equation 62.

Consider a pair of vortex filaments of equal strengths
but opposite rotations as shown in Figure A4, located at
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Figure A4. Stationary inviscid vortices behind a circular
cylinder. '

131




conjugate points Z, and %, outside a circular cylinder

1 1

lz] = A. The complex potential of the vortex combination in
the absence of the cylinder is given by Egquation 61 as the
sum of the potentials due to each vortex rotating alone in
an infinite, undisturbed fluid. If the motion of the fluid

is due solely to the vortices, the circle theorem gives the

potential for flow around the cylinder as

2
! - %
w(2) = -ikn|—=| + ixkn N R (63)
2 -2 2 -z
Z 1l

Expanding the logarithms of Equation 63, the potential

becomes
— AZ _ ]
w(z) = ik&n(z - Zl) + ik&¢n(z - Zl) + 1K£n(ze - Zl)
2
. A
-1K£n[7— - Zl]
or
w(z) = -ik#n(z2 - 2;) + ikan(z - Z,) - iKln(Z - :ri
Z
2 3
+ iKln(Z A iKln(—il (64)
4 2

The terms of the above equation represent, respectively, the
potential of the vortex filaments at A and B, the images of

these vortices at the inverse points A' and B' inside the
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cylinder, plus a constant term.

Since a vortex cannot induce velocity at its center,
the motion of a vortex system is a function of the combined
velocity fields of all sources, sinks, and other vortices in
a fluid region. From Equation 63, the complex velocity of
the vortex at A can be calculated by considering all contri-
butions to the flow except from the vortex. Therefore,
eliminating the first term of Equation 64 the complex

potential of the vortex at A is given by

2
(2 -zl)(z - A
Z
wA(Z) = jkin 5 1 (65)
A
(z'r]
1 1l

Adding a uniform velocity field, U, directed in the
positive X-~direction, to this flow field around the cylinder,

the complex potential at A becomes

2 3
(z - zl)[z -4
A2 Zy
w, (Z2) = ~U(Z + -—1 + ikin (66)
A Z ( AZ\
1z - 7]
L 1

The complex velocity at A is then obtained from the above

relation by differentiating with respect to 2 and setting

To fix this vortex at point A, the velocity, Var must

vanish. Applying these conditions to Equation 66 and
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expanding

2 = 2 2 =
2J ] im(zl - A )(zlzl - A°) + A (zl zl)

— 2 = 2 _
dividing both sides of this equation by the conjugate of
Equation 65 and simplifying, the condition for a fixed

vortex at A becomes

2

= 2 = = 2 _

(ZlZ1 - A7) + ZlZl(Zl - Zl) =0 (67)
Expressing Equation 67 in polar form, Zl = rele it becomes
2 ; -ig 2

(r2 - A2) + rz(rele - re le) =0

2 2,2 4 . .2,. 2.4 . 2
(r“ - A°) = -4r° sinh“(i6) = -4i"r sin" 8
r2 - A2 = 2r2 sin 86

2

r - %— = 2r sin © (68)

Referring to Figure A4, page 117, Equation 68 yields the

following condition for a stationary vortex at A:

AAT = AB (69)

In addition, Equation 68 relates the strength of the vortex

at A to its position by

K. = (70)
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Since the flow is symmetric to the X-axis, similar condi-

tions apply to the vortex filament at B.

The complex potential for flow of the uniform stream

U over a circular cylinder with fixed vortices behind is

obtained by adding the term -ik&n(Z - Zl) for the vortex at

A to Equation 66, resulting in

2

w(Z) = —U(Z + A 1 + ik&n(2 - El) + ixlntz

7

A2
- ik&n(z - Zl) - ixln{z - ——J

>

l

!

(71)

To include vortices in the flow field upstream of the

circular cylinder at positions zZ, and 52, similar logarithmic

terms must be added to the above equation yielding a complex

potential of the following form:

2
w(Z) = —U(Z + -—] + ix(ln(z - fi) + 1n(z -
L
: 2
A
- n(2 Zl) - ln{Z - EII + n(Z2 -
A2
+ {2 - —| - n(2 - Zz) - &niz -
Z;

Introducing the complex coordinates, 2 = X + iY,

into the

above equation and separating the real and imaginary parts

results in the following relation for the nondimensional

stream function:
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y K 2 2
= 2= =Y - +-={-An[(X - X.)" + (Y - Y.)7]
UA x2 + Y2 1 1
X - X, )2 Y 2]
+ in T——qz-l + 1Y - —-2—-——-—1 3
X, + Y X, + Y
1 1 1l 1/ J
- n(X - X )2+ (Y - ¥ )2] - nf X + Xl 2
1 1 2.2

+ n[(X - x2)2 + (Y - Y2)2]
{ X, ]2 [ Y, ]2

+ n}iXx - + Y + (72)
A A R R

Differentiating the stream function with respect to the X-

and Y-directions provides the components of the velocity

vector,
u=-3 (73)
v=2 (74)
where
161 = /uZ¥ v2
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These equations together with Equation 72 define the invis-
cid streamlines aﬂa velocities over the circular cylinder
with stationary vortices upstream and downstream in a
uniform flow field.

Applying the Joukowski trénsformation converts this
region of the flow outside the circular cylinder in the 2

plane to a region outside an elliptical cylinder in the 2

plane,

where

In terms of the coordinate direction,

a2 - b2

Nondimensionalizing by the length of the minor axis 2 < b

and defining an ellipse aspect ratio, k = a/b,

x% - 1) - x

X =X+ : (75)
x% + y?
2 |
y=Y-(k§1)'zY (76)

X"+ Y

Applying the transformation given by Equations 75 and

76 to the expression for the stream function of Equation 72
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and the equations for the potential velocity of Equations 73
and 74 gives the solution for inviscid flow over an ellip-

tical cylinder with fixed vortices,.
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APPENDIX C
THE CONSERVATION OF EDDY VISCOSITY

A majority of the methods used for incorporating the
effect of turbulence on the boundary layer have basically
relied on the mixing length theory as an empirical relation-
ship between the turbulent viscosity and the mean flow
parameters. A more recent concept, proposed by Nee and
Kovasznay in (21), is based to a greater extent on the
physical mechanisms involved with turbulent interaction by
considering the eddy viscosity as a property of the flow
which is conserved during turbulent motion within the
boundary layer.

In describing the distribution of the turbulent shear
through the boundary layer, the momentum equation relates
the Reynolds' stress to the processes associated with con-
vection, diffusion, production and dissipation. Assuming
that the eddy viscosity is conserved during the exchanges of
momentum involved with these processes, the following trans-

port equation has been proposed

g, G2 (ginl ., .| - pRE oY)
oX 0z 0z 0z azi 2!
_—— - dUu —
n(nz- V) = . d__‘_l_ (77)
U dax 3z

oo

where the bar indicates dimensional quantities. The
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variable n is the sum of the molecular and eddy viscosities;
a, b and ¢ are empirically determined but universal con-
stants; and ?' is a length scale associated with the dissi-
pation of turbulence which is equivalent to the normal
distance from a solid boundary for turbulent shear flows.
Nondimensionalizing this equation results in the
following nonlinear, partial differential equation for the

eddy viscosity:

2 2
o€ se _ 1 > J€ ou
u5-£+w—z-—§—é-[(e+l)g?+(-5—z-]]+ae—z
_b e(e +1) ¢ ele + 1) dUg du|
Re 2 Re 2 dx |9z|
z v (78)

The boundary conditions which apply to this equation
will, of course, vary with the flow situation considered,
but for the normal boundary layer problem with an inviscid,
turbulence-free external flow, the following conditions

apply at the boundaries:

e(x,0) =0
lim e(x,2z) = 0
y+oo

The solution of this equation also requires an initial con-
dition on the eddy viscosity. One possibility is to apply
some type of mixing length model to an initial velocity

profile.

Numerical solution. Since the eddy conservation
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equation and the momentum equation are coupled through the
convection and the dissipation terms, respectively, the two
solutions must be obtained simultaneously through an
iterative technique. Applying an implicit finite difference
method similar to the solution of the boundary layer equa-
tion, results in a system of algebraic equations which can
be solved by the inversion of the tridiagonal coefficient
matrix.

The conservation equation is linearized by the
velocity profiles calculated along the previous x-station.
Applying the above numerical solution, the eddy profile is
used to re-enter the momentum equation and solve for the
velocity, iterating on this procedure until the solutions
for the velocity and eddy viscosity converge.

An attempt has been made to incorporate the concept
of conservation of eddy viscosity into the turbulent boundary
layer model, but problems in obtaining a satisfactory initial
eddy profile leading to convergence of the solution and
insufficient time to investigate the possibilities of this
method, have prevented any meaningful results or evaluations

of this theory.
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